4121 土样直接剪切试验
土的抗剪强度是土在外力作用下其一部分土体对于另外一部分土体滑动时所具有的抵抗剪切的极限强度。测定土的抗剪强度可以提供计算地基强度和地基稳定性用的基本指标,即土的粘聚力和内摩擦角。土的内摩擦角和粘聚力与抗剪强度之间的关系由库仑公式表示:
τ=σ·tanφ+c (4-1)
式中:τ——抗剪强度,(kPa);
σ——为正应力,(kPa);
φ——内摩擦角,(°);
c——黏聚力,(kPa)。
直接对试样施加剪力的设备叫直剪仪,常用的直剪仪根据施加剪应力的特点分为应力控制式和应变控制式两种。应力控制式是分级施加等量水平剪力于土样使之受剪;应变控制式是等速推动剪切容器使土样受剪。以应变式最为常用。试样置于上下盒之间,在试样上先施加预定的法向压力,然后以一定速率分级施加水平力对试样施加剪力,可借助于与上盒相接触的量力环的变形或以所加水平力与杠杆力臂比关系确定。为求得的抗剪强度参数(c,φ),一般至少用四五个试样,以同样的方法分别在不同的法向压力σ1,σ2,σ3……的作用下测出相应的τf1,τf2,τf3……的值,根据这些σ,τf值,即可在直角坐标中绘出抗剪强度曲线。
为近似模拟现场土体的剪切条件,按照剪切前的固结过程、剪切时的排水条件以及加荷快慢情况,将直剪试验分为:快剪、固结快剪和慢剪三种试验方法。
应变控制式直剪仪见图4-1,仪器的主要部件剪切容器是由固定的上盒和活动的下盒(应变式)或固定的下盒与活动的上盒(应力式)等部件组成。其中环刀:内径618mm,高20mm。位移量测设备,百分表和传感器,百分表量程应为10mm,分度值001mm,传感器的精度应为零级。
图4-1 应变控制式直剪仪
通过对工程地质勘察钻孔分析,针对粉土、粉质黏土分别进行直剪试验。将每一级压力下的试验结果绘制成剪应力τ和剪切变形s的关系曲线如图4 2,一般将曲线的峰值作为该级法向应力下相应的抗剪强度τf。
图4-2 剪应力-剪变形关系曲线
图4-3 峰值强度和残余强度曲线
变换几种法向应力σ的大小,测出相应的抗剪强度τf。在σ-τ坐标上,绘制曲线,即为土的抗剪强度曲线,也就是莫尔 库伦破坏包线,如图4-3所示。
直线交τf轴的截距即为土的粘聚力c,直线倾斜角即为土的内摩擦角φ,相关直线可用图解法或最小二乘法确定。直接剪切试验的结果用总应力法按库仑公式τ=σ·tanφ+c,计算抗剪强度指标。
试验对于砂土而言,τf与σ的关系曲线是通过原点的,而且,它是与横坐标轴呈φ角的一条直线。该直线方程为:τf=σ·tanφ
式中:τf——砂土的抗剪强度,(kPa);
σ——砂土试样所受的法向应力,(kPa);
φ——砂土的内摩擦角,(°)。
对于黏性土和粉土而言,τf与σ之间的关系基本上仍呈一条直线,但是,该直线并不通过原点,而是与纵坐标轴形成一截距c,其方程为:τ=σ·tanφ+c
式中:c——黏性土或粉土的粘聚力,(kPa)。
由上式可以看出,砂土的抗剪强度是由法向应力产生的内摩擦力σ·tanφ(tanφ称为内摩擦系数)形成的;而黏性土和粉土的抗剪强度则是由内摩擦力和粘聚力形成的。在法向应力σ一定的条件下,c和φ值愈大,抗剪强度τf愈大,所以,称c和φ为土的抗剪强度指标,可以通过试验测定。
计算公式:
煤矿露天井工联合开采理论与实践
4122 煤岩样直接剪切试验
煤岩试块直接剪切试验采用岩石直剪仪进行。其法向为与剪切力范围均应满足煤岩体赋存情况与煤岩强度上限的要求。
(1)试样制备
1)岩块试样
① 试样可用立方体(剪切面积为5cm×5cm~20cm×20cm),或高度等于直径的圆柱体(直径>5cm);
② 试样应用有足够刚度的钢外框包裹。试样与外框之间应贴实;
③ 测定饱和剪切强度时,应事先将试块按规定要求进行饱和。
2)具有软弱结构面的试样
① 试样应尽量保持原状结构,防止结构面被扰动;
② 试样断面尺寸按同岩块试样尺寸,结构面保持在试样高度中部;
③ 对天然含水量的试样,在试样制备过程中应尽量减少含水量的损失。试样需进行饱和时,应按《土工试验方法标准》GB/T50123[41]规定要求进行饱和。
(2)试样数量
一组试样不得少于5个,一般应多制备1、2个样。
(3)试样描述
实验前,应对下列内容进行描述。
① 岩煤名称、组织结构、胶结物质和风化程度;
② 层理、片理和节理裂隙的发育程度及其与受剪方向的关系;
③ 结构面的填充物质和填充程度以及试样采取和制备过程中的扰动情况;
④ 测量试样尺寸,对试样进行素描或拍照。
(4)仪器设备
制备试样设备、饱和样品设备、测量试样尺寸量具、岩石直剪仪、测量法向和切向位移仪表、测量法向应力和剪切应力仪表,建议采用连续自动记录仪器。
(5)测试步骤
1)将试样至于直剪仪上,试样的受剪方向应与设计方向一致;
2)安装法向和剪切方向的加荷系统时,应保证法向力和剪切向力的合力通过剪切面的中点;
3)安装测量法向和切向位移的仪表时,测杆的支点应设置在剪切变形影响范围之外,测杆和表架应有足够的刚度;
4)所选择的法向应力,除充填夹泥的结构面测定外,一般应不小于实际应力。对于充填夹泥的结构面测定,法向应力的选择,以不挤出夹泥为原则;
5)试样上的法向应力在设计的正应力区间内分4个等级选择对应整数值施加;
6)法向荷载分4、5次施加,每5min加荷一次,加荷前后读取垂直变形,达到预定荷载之后,观测变形,直到相对稳定时能施加剪切荷载;
垂直变形相对稳定的标准应符合下列要求:
① 对于不夹泥的结构面和岩样的测定,5min的读数不超过001mm;
② 对于充填低塑性夹泥的结构面和煤样测定,10min的读数不超过005mm;
③ 对于充填高塑性夹泥的结构面和煤样测定,15min的读数不超过005mm。
7)剪切荷载的施加应符合下列要求:
① 剪切荷载分级施加,除低塑性和高塑性夹泥结构面试验分别采用预估最大剪切荷载的5%和10%进行施加外,其余试验按预估最大剪切荷载的8%~10%施加;
② 施加的剪切荷载引起的剪切变形超过前一级剪切荷载变形值的15倍时,剪切荷载减半施加,即分别按预估的最大剪切荷载的25%、5%以及4%~5%施加;
③ 剪切荷载的施加采用时间控制,即每5min加荷一次,并记录加荷前后的剪切向和法向位移值;
④ 试样剪断后,继续施加剪切荷载使剪应力下降到接近某一常数值,记录剪应力值;
⑤ 如需进行摩擦试验,则调整剪切位移仪表,在同级法向应力下,按上述方法进行摩擦试验;
⑥ 必要时可改变法向应力进行单点摩擦试验;
⑦ 在剪切过程中,宜用稳压装置使法向应力保持恒定,无稳压装置又遇到升压或退压情况时,要及时手动调整。
8)测定结束后,拆除仪表、翻转试样,取样按《土工试验方法标准》GB/T50123[41]规定测定含水率,并对剪切面进行如下描述:
① 岩样破坏状态是否沿预定剪切面破坏,当不满足测定设计方案要求时,测定数据无效;
② 测定剪切面的起伏差,绘制沿剪切方向的断面高度的变化曲线;
③ 对剪切面进行素描和拍照,记述节理裂隙与剪切面的关系,测量剪断面积;
④ 对于充填夹泥的结构面,必要时记述夹泥性质、厚度。
(6)煤岩样测定数据记录与整理
1)按式(4-3)、(4-4)计算各级荷载下的法向应力和剪应力:
煤矿露天井工联合开采理论与实践
式中:σ——作用于剪切面上的法向应力,(MPa);
τ——作用于剪切面上的剪应力,(MPa);
P——作用于剪切面上的总法向荷载,包括施加的荷载、设备质量,(kN);
Q——作用于剪切面上的剪切荷载(应扣除滚轴排摩擦阻力),(kN);
A——实测剪切面积,(cm2)。
2)绘制剪应力与法向位移、剪应力与剪切位移的关系曲线。其中剪切位移取所有测量仪表的平均值,法向位移的前后端测量仪表应取平均值。
3)根据上述曲线,确定峰值和残余强度值,以及比例极限、屈服极限等。
4)绘制各剪切阶段的剪应力和法向应力关系曲线,按库伦表达式确定相应的摩擦系数和粘聚力。
4123 三轴剪切试验
三轴压缩剪切试验是测定土与软弱岩土的抗剪强度的一种方法。它通常用3~4个圆柱形试样,分别在不同的恒定周围压力(σ3)下,施加轴向压力,即主应力差(σ1-σ3),进行压缩剪切直到破坏;然后根据 Mohr Coulomb理论,求得抗剪强度参数。[40]
试验采用全自动应变控制式三轴仪见图4-4,有反压力控制系统、周围压力控制系统、压力室、孔隙压力测量系统、数据采集系统及试验机等。
图4-4 全自动应变控制式三轴仪
本试验分为不固结不排水剪(UU);固结不排水剪(CU或 )和固结排水剪(CD)等
3种试验类型。一般试验采用的是固结排水剪(CD)。
三轴剪切试验的原理是在圆柱形试样上施加最大主应力(轴向压力)σ1和最小主应力(周围压力)σ3。固定其中之一(一般是σ3)不变,改变另一个主应力,使试样中的剪应力逐渐增大,直至达到极限平衡而剪坏,由此求出土的抗剪强度。
试验时,将圆柱体土样用乳胶膜包裹,固定在压力室内的底座上。先向压力室内注入液体(一般为水),使试样受到周围压力σ3,并使σ3在试验过程中保持不变。然后在压力室上端的活塞杆上施加垂直压力直至土样受剪破坏。
设土样破坏时由活塞杆加在土样上的垂直压力为Δσ1,则土样上的最大主应力为σ1=σ3+Δσ1,而最小主应力为σ3。由σ1和σ3可绘制出一个莫尔圆。
按上述方法进行试验,对每个土样施加不同的周围压力σ3,可分别求得剪切破坏时对应的最大主应力σ1,将这些结果绘成一组莫尔圆。根据土的极限平衡条件可知,通过这些莫尔圆的切点的直线就是土的抗剪强度线,由此可得抗剪强度指标c、φ值。
图4-5 三轴剪切试验基本原理
将同一土样在不同应力条件下所测得的不少于2次的三轴剪切试样结果,分别绘制应力圆,从这些应力圆的包线即可求出抗剪强度指标。至于煤岩试块的三轴压缩试验,则需采用专门的岩石三轴仪进行压缩(剪切)试验以求取煤岩的三轴抗剪强度指标。
4124 单轴抗压强度试验
煤岩单轴抗压强度的测定,一般是采用直接压坏标准试件的方法。应用材料试验机对标准试样进行抗压强度试验;如图4-6所示。采用圆柱体标准试样,直径为5cm,允许变化范围为48~42cm;高度为10cm,允许变化范围为95~105cm。当缺乏圆柱体制样设备时,允许采用5cm×5cm×10cm的方柱体。试样数量:试样数量按要求的受力状态或含水状态确定,每种情况下式样的数量一般不小于3块。
图4-6 煤岩单轴压缩试验原理图
煤岩单轴受压至破坏时的最大压应力值称单轴抗压强度,简称抗压强度,以R表示,
煤矿露天井工联合开采理论与实践
式中:R——试件单向抗压强度,(kPa);
P——试件破坏载荷,(kN);
F——试件初始断面积,(cm2)。
4125 抗拉强度试验
应用材料试验机,对标准试件采用直接拉伸法或间接法(劈裂法和点荷载)测定煤岩单向抗拉强度;如图4-7所示。以间接法劈裂法为例测试煤岩单向抗拉强度,试件规格:标准试件采用圆盘形 直径,厚25±02cm,也可采用5cm×5cm×10cm(公差±02)的长方形试件。
图4-7 煤岩抗拉强度试验
(1)试件单向抗拉强度用RL表示,
煤矿露天井工联合开采理论与实践
式中:RL——试件单向抗拉强度,(kPa);
P——试件破坏载荷,(kN);
D——试件直径,(cm);
L——试件厚度,(cm)。
注:用方形试件时,D为试件高度。
(2)采用算术平均值计算并确定抗拉强度。计算结果取2位有效数字。
4126 固结压缩试验
应用固结仪:由环刀、护环、透水板、水槽、加压上盖组成(图4-8)。测定土的压缩系数av,用以计算压缩模量Es。本试验方法适用于饱和黏土。当只进行压缩时,允许用于非饱和土。
饱和土体受到外力作用后,孔隙中部分水逐渐从土体中排出,土中孔隙水压力逐渐减小,作用在土骨架上的有效应力逐渐增加,土体积随之压缩,直到变形达到稳定为止。土体这一压缩变形的全过程,称为固结。固结过程的快慢取决于土中水排出的速率,它是时间的函数。而非饱和土体在外力作用下的变形,通常是由孔隙中气体排出或压缩所引起,主要取决于有效应力的改变。
固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格土样,然后在侧限与轴向排水条件下测定土在不同荷载下的压缩变形,且试样在每级压力下的固结稳定时间为24h。
固结试验主要用于测定饱和土的压缩系数、体积压缩系数、压缩模量和回弹指数等。
某一压力范围内的压缩系数,应按下式计算:
煤矿露天井工联合开采理论与实践
式中:av——压缩系数,(MPa-1);
pi——某级压力值,(MPa)。
图4-8 固结仪
某一压力范围内的压缩模量,应按下式计算:
煤矿露天井工联合开采理论与实践
式中:Es——某压力范围内的压缩模量,(MPa)。
固结系数可按时间平方根法或时间对数法确定
4127 含水率试验
岩土含水率试验用于测定岩土在天然状态下的含水。岩土的含水率可间接地反映岩土中孔隙的多少、岩土的致密程度等特性。
试验采用烘干法。岩土烘干温度为105~110℃。
含水量是指岩土样在105~110℃温度下烘干至恒重时所失去的水分质量与烘干质量的比值,用百分数表示为:
煤矿露天井工联合开采理论与实践
式中:w——岩土含水率,(%);
m0——称量盒的干燥质量,(g);
m1——试样烘干前的质量与干燥称量盒的质量之和,(g);
m2——试样烘干后的质量与干燥称量盒的质量之和,(g)。
土样在105~110℃温度下加热,土中自由水会变成气体挥发,土恒重后,即可认为是干土质量m2-m0,挥发掉的水分质量为水重m1-m2。
4128 密度试验
岩石块体密度是选择建筑材料、研究岩石风化、评价地基基础工程岩体稳定性及确定围岩压力等必须的计算指标。
密度测定采用量积法、水中称量法或蜡封法。试件尺寸应大于岩石最大颗粒的10倍,试件可采用圆柱体、方柱体或立方体,蜡封法采用边长40mm~60mm的浑圆状岩块。每组试件不少于3~5个。
煤矿露天井工联合开采理论与实践
式中:ρ——试件密度,(g/cm2);
M——岩样质量,(g);
A——试件;
H——试件高度,(cm)。
4129 比重试验
定义比重为土在100~105℃下烘干至恒值时的质量与同体积4℃纯水质量的比值。一般采用比重瓶法。按下式计算:
煤矿露天井工联合开采理论与实践
式中:Gs——土粒比重;
m1——瓶、水总质量,(g);
m2——瓶、水、土总质量,(g);
Gwt——T℃时纯水的比重。
根据以上三项试验成果,可以计算干密度ρd、孔隙比e、孔隙率n、饱和度Sr、饱和含水量wmax,按下式计算:
煤矿露天井工联合开采理论与实践
式中:ρw——纯水在T℃时的密度,(g/cm3);其他指标同上述,含水量w值以小数代入公式。
41210 界限含水量试验[41]
界限含水量试验,可测定液限WL、塑限WP,并计算得到液性指数IL、塑性指数IP。
采用光电式液塑限联合测定仪。用76g圆锥仪测定在5s时土在不同含水量时圆锥下沉深度,在双对数坐标纸绘制圆锥下沉深度和含水量的关系曲线。在直线上查得圆锥下沉深度为17mm处的相应含水量为17mm液限(WL17),下沉深度为10mm处的相应含水量为10mm液限(WL10),查得下沉深度为2mm所对应得含水量为塑限(WP),以百分数表示,准确至01%。
塑性指数IP,液性指数IL按下式计算:
IP=WL-WP(4-12)
煤矿露天井工联合开采理论与实践
式中:W、WL、WP分别为天然含水率、液限及塑限。
分别按17mm液限(WL17)、10mm液限(WL10)计算塑性指数IP17、IP10、IL17、IL10。41211 软弱岩土流变试验
(1)岩土的流变性能
许多滑坡地质灾害发生的实例和研究表明:边坡岩体中的软弱夹层往往是对边坡稳定与变形直至发生滑坡起着控制作用的岩土,它的试验研究包含二个重要方面:一是强度大小,二是变形特征。除了研究软弱岩土在瞬时应力作用下岩石的破坏特征和强度外,还必须研究岩土特别是对边坡稳定起控制作用的软弱夹层岩土的流变特性(蠕变),因此需对边坡稳定起控制作用的软弱岩土测定岩土的流变强度—长期强度及有关流变(蠕变)参数。
在岩体上施加某一荷重后,岩体将产生瞬时的弹性变形,在温度不变的情况下,如果保持这一荷重为定值,其变形将随时间的延长而增长,这就是岩体的流变现象。对于时间效应明显的露天煤矿边坡及顺层岩体边坡软弱岩体,其长期强度是非常重要的。
岩土的流变性能主要包括四个方面:
① 蠕变特性—在荷重作用下,应变ε随时间t而逐渐增长的现象;
② 松弛特性—当应变ε一定时,应力σ随时间t而逐渐减小的现象:
③流动特性—当时间一定时,应变速率 与应力σ的关系;
④ 长期强度—在一定时间内,强度τ与时间t的关系。
典型的岩土蠕变分为三阶段,见图4 9所示:[42]
图4-9 典型蠕变三阶段曲线
1)初始蠕变,开始时蠕变速度较快,然后过渡到一恒定蠕变区。图中0-A段为初始蠕变阶段。
2)稳定蠕变,如图H-B段,在该区内,蠕变呈恒速增长,此时蠕变速度较小并不发生破坏。
3)加速蠕变,当达到一定的时间后,变形超过恒定蠕变区,则急剧增加,直至破坏,即图中B-C段。
当应力较小时,无论多长时间都不会发生加速蠕变,这样的蠕变为稳定蠕变;但当应力达到一定值,蠕变将进入加速蠕变区,这样的蠕变为不稳定蠕变,由二区进入三区的临界值,就是我们所要测定的岩土的长期强度-流变强度。
(2)直剪流变试验
流变试验设备:对于土或软弱夹层中的泥化夹层,可以选用直剪流变试验仪或采用四台等应力直剪仪,直接在恒温恒湿、防扰动的环境里(如地下室)进行流变试验。对于硬岩或较硬岩石,则选用岩石剪切流变仪,这是一种中型直剪流变仪,适用于岩石、混凝土快剪及流变试验。该机水平最大剪力可达1000kN,垂直压力达400kN,水平和垂向最大行程50mm,试样尺寸三种规格:100mm×100mm×95mm,150mm×150mm×145mm、200mm×200mm×195mm,稳压系统由电动泵、蓄能器、充油阀、稳压阀、压力指示表等组成,能对水平压力(稳压范围40Pa~320×105Pa)和垂直压力下(稳压范围35Pa~260×105Pa)试件进行长期稳压,以进行各种要求的流变试验。
试验方法主要介绍最常用的软弱岩土的直剪流变试验方法。
首先对试验岩土进行快剪试验,取得不同法向力级的剪应力破坏值σi和τi,然后按下式确定流变试验相对应正压力和剪切荷载等级梯度:
煤矿露天井工联合开采理论与实践
式中:τ0i为对应不同法向力σi的剪切等级剪应力,(kPa);τi为对应不同法向力σi下的快剪强度,(kPa);K为土岩介质性质系数,一般取K=05~085;n为流变试验线性范围分级数n=4~6。
一般按4级(i=4)正应力进行,正应力大小可根据土岩赋存深度或土岩强度确定,然后按上述得出的流变试验方案由小到大(τ0i)分级进行。每一级剪力维持一周,每天测取蠕变变形量,得出每一级σi和τ0i下的剪切蠕变变形γ-时间t关系曲线,n周之后可得4组(i=4)剪切蠕变变形γ—t数据,在试验过程中要根据试验结果(主要是变形情况)对τ0i进行适当调整。一般至最后一级τ0i时试样均能发生破坏。一组4个试样,试验历时2个月以上。
根据4组γ-t数据,采用应变叠加原理可以绘制不同正应力σi下的4组剪应力τ-剪切应变γ的叠加曲线,见图4-10~图4-13;根据叠加曲线绘制各种时间的剪应力τ与剪应变γ等时线簇,见图4-14~图4-16。
图4-10 剪应变叠加曲线σ=50kPa
图4-11 剪应变叠加曲线σ=100kPa
由以上两套图可以看出:如施加的剪应力τ<τ∞,γt曲线呈示a型,呈趋稳定性蠕变;而当τ>τ∞时,曲线呈b型,即经减速、等速、加速三个阶段发展至破坏—即非稳定蠕变:c型属于过渡型。剪应力等级分得越细,试验时间愈长,则试验成果的精度愈高。但一般受时间限制,剪应力分4、5级。时间每一等级试验(稳压)七天就基本可以满足边坡软岩流变试验的要求。
图4-12 剪应变叠加曲线σ=150kPa
图4-13 剪应变叠加曲线σ=200kPa
图4-14 剪应力—剪应变等时线簇σ=50kPa
图4-15 剪应力—剪应变等时线簇σ=100kPa
图4-16 剪应力—剪应变等时线簇σ=150kPa
根据叠加曲线及等时线簇,绘制剪切模量G与时间t的关系曲线。剪切模量G=τ/γ,即剪应力与剪应变关系曲线的斜率。不同的剪切历时有不同的剪切模量。一般来说,它是随着剪切历时的增长而降低它描述了土骨架在剪应力作用下粘滞流动的时间效应,是表征夹层流变性质的重要参数之一,见图4-17、图4-18所示。
据这两组曲线,还可绘制以剪切速率(γ=dγ/dt)为纵坐标,以剪应力(τ)为横坐标的流动曲线,它表明了在一定含水量和一定密度状态下,剪切速度—剪应力的关系,根据此曲线可以计算出软弱夹层的粘滞系数η和松弛周期M。流动曲线见图4-19所示。
图4-17 剪应力—剪应变等时线簇σ=200kPa
图4-18 剪切模量—剪切历时关系曲线
图4-19 流动曲线-(剪切变形速率—剪应力)
根据以上流变试验曲线和流变理论,可以确定软弱夹层的流变特性参数。
(3)软弱夹层蠕变模型
根据软弱岩层的稳定蠕变和非稳定蠕变两种类型,分别建立蠕变模型。
1)稳定蠕变模型
当剪应力τ小于其长期强度τ∞时,整个蠕变过程包括以下几个阶段:瞬时应变、初始蠕变、稳定蠕变。瞬时应变后,进入初始蠕变阶段,应变速率由大逐渐变小,而后过渡到稳定蠕变阶段,当t→∞时,应变量最终趋于一稳定值,稳定蠕变过程不会过渡到加速蠕变过程,因此不会影响边坡的稳定和安全,其蠕变方程为:
煤矿露天井工联合开采理论与实践
式中:G0——瞬时剪切模量,(kPa);
τ——剪应力,小于τ∞,(kPa);
G∞——长期剪切模量,(kPa);
η1——蠕变初始段的粘滞系数,(kPa·h);
t1——蠕变初始段时间,(h);
t2——t1至某一时间或t1至无穷大t∞的时间。67
因为整个蠕变曲线是连续的,所以从初始段向稳定段过渡时,其应变速率应相等,因而对上述方程求导数可求得由初始蠕变向稳定段过渡的时间t1,或者从试验曲线判断t1,平衡方程为下式:
煤矿露天井工联合开采理论与实践
这种稳定蠕变模型可采用修正凯尔文模型表征其应力—应变—时间关系。
2)非稳定蠕变模型
当剪应力τ大于长期强度τ∞时,整个蠕变过程包括以下几个阶段:瞬时应变γ0,初始蠕变γ1,等速蠕变γ2,加速蠕变γ3,直至岩体破坏,其蠕变方程如下:
煤矿露天井工联合开采理论与实践
式中:G′0——τ大于τ∞后的瞬时剪切模量,(kPa);
G′∞——τ大于τ∞后的长期剪切模量,(kPa);
η′1——τ大于τ∞后的初始段粘滞系数,(kPa·h);
η′2——τ大于τ∞后的等速段粘滞系数,(kPa·h);
η3——加速段的粘滞系数,(kPa·h);
t1——初始蠕变段时间,(h);
t2——等速蠕变段时间,(h);
t3——加速蠕变段时间,(h)。
当τ>τ∞时,在初始蠕变之后出现等速蠕变,这时应在凯尔文模型后串联-宾哈姆体。等速段向加速段的转化,主要决定于应变量的积累,当应变达到一定值γ2时,进入加速蠕变,粘滞系数η3随时间不断减少,可以用一变η3牛顿粘筒表示。在蠕变过程中,可使蠕变由速率最小的γmin逐渐增大,直至破坏。
由于等速蠕变转化为加速蠕变,主要靠应变控制,故为非稳定蠕变的模型,它与上述的蠕变方程是对应的,这与中科院地质所长春地质学院对泥化夹层蠕变模型的研究成果是一致的。
由蠕变τ-γ曲线可以看出,当τ>τ∞之后,曲线斜率有变化,说明G和η有变化,公式中的G0′、G′∞,η值均应用超过τ∞以上的数值。
煤矿露天井工联合开采理论与实践
蠕变破坏时间根据室内试验或现场观测资料,用经验公式来估算,法恩依据室内试验资料建议的经验公式为:
lntr=075-092lnξmin (4-19)
式中:tr——从蠕变开始计算的破坏时间;
ξmin——最小蠕变速率(等速段应变速率)。
如果在边坡岩体等速蠕变段不采取任何措施,如疏干排水,减重、加固支挡等,那么等速段的发展,必然导致加速段的出现,这表明岩层结构遭到破坏,边坡将很快失稳破坏。
加速段的应变增量为:
煤矿露天井工联合开采理论与实践
η3是一个变量,与应变速率、蠕变积累量和蠕变时间有关,目前还难以由理论分析确定,只能通过试验资料分析确定,但这次仍未观察到由等速段到加速段全过程的试验资料,因而难以由试验资料确定。斋腾通过室内试验的分析,得出加速段的应变用下式表达:
煤矿露天井工联合开采理论与实践
式中:A——试验常数;
tr——等速段开始至蠕变破坏时间;
t2——加速段开始的时间;
t——加速段蠕变延续时间;
t′r——加速段开始至蠕变破坏时间。
法恩建议的应变速率开始增加至破坏时间的时间间距经验公式为:
煤矿露天井工联合开采理论与实践
式中:ttr——由t开始到达破坏所需时间;
ξ——应变速率开始增加时的应变速率。
加速段的变形量γ为:
煤矿露天井工联合开采理论与实践
式中:d——试验常数,由试验数据求出,
这样,当τ>τ∞时,整个蠕变方程也可写为:
煤矿露天井工联合开采理论与实践
根据蠕变方程,可以用来估算蠕变过程的总变形量,从而进一步推断破坏时间。
岩土力学课程是土木工程专业的一门十分重要的技术基础课。它的目的是使学生获得有关岩土力学学科的基本理论、基本知识的和基本技能。它的任务是为后续课程如地基基础与地基处理、岩土工程设计等专业课程提供岩土力学基本知识,也为从事岩土科学技术的专门研究奠定必要的理论基础。学生必须牢固地掌握岩土的基本概念与基本原理;掌握岩土的物理力学性质、强度变形计算、稳定性分析、挡土墙及基坑围护的设计与计算、地基承载力等岩土力学基本理论与方法,从而能够应用这些基本理论与基本原理,结合有关交通土建、建筑工程、土木工程的理论和施工知识,分析和解决岩体工程及地基基础问题。
------百度百科
由于在工程实践中岩石力学涉及地球物理学、施工技术等学科、弹:
①岩石是一种复杂的地质介质,也是理论研究的主要依据,尤其是在岩体结构分析的基础上进行,并利用获得的资料验证或修改理论分析结果和设计方案。野外试验和原型观测是在天然条件下:科学实验和理论分析,即不包括明显不连续面的岩石单元)试验和模型试验(主要是地质力学模型试验和大工程模拟试验),等等。理论分析是对岩石的变形、塑性理论和松散介质理论进行研究,因此强调在现场对岩石的性状进行原型观测、野外试验和原型观测(监控)。1960年代以来,还无法为计算提供准确的参数及合适的边界条件,研究工作都须在地质分析,长期以来沿用弹性理论、破坏准则及其在工程上的应用等课题进行探讨,目前使用的理论和方法还不能完全描述自然条件,因此有关学科的研究人员以及工程勘测设计。在这方面。由于岩石力学性质十分复杂。室内试验一般分为岩块(或称岩石材料;
③岩石性质十分复杂,所以这些理论的适用范围总是有限的,施工人员的密切合作至关重要,使计算技术的应用受到影响,数值分析方法和大型电子计算机的应用给岩石力学的发展创造了有利条件,各向异性,虽然发展了一些新的理论(如非连续介质理论)、强度。用这种方法和计算设备可以考虑岩石的非均质性、计算技术、实验技术,但都不够成熟,粘,一般应注意以下三个基本问题、塑性、构造地质学;
②研究岩石力学的电要目的是解决工程实际问题。对工程实践而言。但是由于当前岩石力学的试验方法较落后。
在研究中。近年来。它们的力学特性,特别是流变性及其对建筑物的影响。科学实验包括室内试验岩石力学的研究方法主要是,应力-应变的非线性和流变性,是岩石力学研究的重要手段,日益受到重视,岩体中的非连续面和软弱夹层往往是控制岩体稳定的主导因素,研究包括有不连续面的岩体的性状
1、软化性:软化性是指岩石浸水饱和后强度降低的性质。
2、软化系数:是指岩石时间的饱和抗压强度于干燥状态下的抗压强度的比值。
第 1 页
TCL小金聆语音空调新品首发 限量4499元抢
点击立即咨询,了解更多详情
咨询
TCL空调器(中山) 广告
3、形状效应:在岩石试验中,由于岩石试件形状的不同,得到的岩石强度指标也就有所差异。这种由于形状的不同而影响其强度的现象称为“形状效应”。
4、尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”。
5、延性度:指岩石在达到破坏前的全应变或永久应变。
6、流变性:指在应力不变的情况下,岩石的应变或应力随时间而变化的性质。
7、应力松弛:是指当应力不变时,岩石的应力随时间增加而不断减小的现象。
8、弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象。
第 2 页
9、峰值强度:若岩石应力--应变曲线上出现峰值,峰值最高点的应力称为峰值强度
10、扩容:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破列或微裂纹继续发生和扩展,岩石的体积应变增量有由压缩转为膨胀的力学过程,称之为扩容
11、应变硬化:在屈服点以后(在塑性变形区),岩石(材料)的应力—应变曲线呈上升直线,如果要使之继续变形,需要相应的增加应力,这种现象称之为应变硬化
12、延性流动:是指当应力增大到一定程度后,应力增大很小或保持不变时,应变持续增长而不出现破裂,也即是有屈服而无破裂的延性流动
13、强度准则:表征岩石破坏时的应力状态
第 3 页
和岩石强度参数之间的关系,一般可以表示为极限应力状态下的主应力间的关系方程:σ1=f(σ2,σ3)或τ=f(σ) 14、结构面: ①指在地质历史发展过程中,岩体内形成的具有一定得延伸方向和长度,厚度相对较小的宏观地质界面或带 ②又称若面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合,不整合,褶皱,断层,层面,节理和片理等
15、原生结构面:在成岩阶段形成的结构面
16、次生结构面:指在地表条件下,由于外力的作用而形成的各种界面
17、结构体:结构面依其本身的产状,彼此组合将岩体切割成形态不一,大小不等以及成分各异的岩石块体,被各种结构面切割而成的岩石块体称为结构体
第 4 页
18、结构效应:岩体中结构的方向性质密度和组合方式对岩体变形的影响。
19、剪胀角:岩体结构面在剪切变形过程中所发生的法向位移与切向位移之比的反正切值。
20、岩体基本质量:岩体所固有的影响工程掩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩石完整程度决定。
21、自稳能力:在不支护条件下,地下工程岩体不产生任何形式的能力。
22、地应力:自然状态下在原岩岩体中存在的由于岩石自重和构造应力形成的分布应力,也称天然应力
23、原岩应力:在工程中指天然存在于岩体中而与任何认为因素无关的应力。
第 5 页
24、残余应力:没有外力作用时在岩体内部由于某种原因在整个岩体内的不均匀的变形而引起的应力
25、初始地应力:岩体中存在的未受工程扰动的原始应力状态下的应力
26、自重应力:由于岩体自重而产生的天然应力
27、构造应力:由于地质构造活动在岩体中引起的应力场,这种应力与一定范围地质构造有关,其主要特点是水平应力大于覆岩垂直应力分量。这一作用可以持续到底层深处。
28、应力重分布:岩体受到工程活动扰动,引起岩体中初始应力的转移变化形成的新的应力场状态。
第 6 页
29、二次应力:相对于初始应力而言,岩体上或岩体内部受到工程活动扰动,引起初始应力自然平衡状态的改变,使一定范围内的原始应力重分布形成的新的应力为二次应力,或称次生应力,直接与工程稳定性有关。
30、岩爆:是地下洞室开挖过程中围岩发生突然脆性破坏的现象。一般在地应力较大部位,岩石被挤压超过其弹性限度,聚集的能量会突然释放出来,伴随有声音、碎石飞散、坠落等现象。
31、构造线:指区域性挤压应力所形成的构造形迹,也就是指与产生地质构造运动的压应力方向相垂直的平面和地面的交线。
32、围岩:指由于人工开挖使岩体的应力状
第 7 页
态发生了变化,而这部分被改变了应力状态的岩体称为围岩。地下工程开挖过程中,在发生应力重分布的那一部分工程岩体称为围岩。
33、围岩压力:地下洞室围岩在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力。作用在支护物上的围岩的变形挤压力或塌坍岩体的重力称为围岩压力。
34、围岩抗力:在有压洞室中,作用有很高的内水压力,并通过衬砌或洞壁传递给围岩,这时围岩将产生一个反力,称为围岩抗力。
35、静水应力状态:在岩石力学中,地下深部岩体在自重作用下,岩体中的水平应力和垂直应力相等的应力状态。
第 8 页
36、形变围岩压力:指围岩在二次应力作用下局部进入塑性,缓慢的塑性变形作用在支护上形成的压力,或者是有明显流变性能的围岩的粘弹性或者粘弹—粘塑性变形形成的支护压力。一般发生在塑性或者流变性较显著的地层中。
37、松动围岩压力:指因围岩应力重分布引起的或施工开挖引起的松动岩体作用在隧道或坑道井巷等地下工程支护结构上的作用压力。一般是由于破碎的、松散的、分离成块的或被破坏的岩体坍滑运动造成的。
38、冲击围岩压力:
(1)是地下洞室开挖过程中,在超过围岩弹性限度的压力作用下,围岩产生内破坏,发生突然脆性破坏并涌向开挖(采掘)空间的一种动
第 9 页
力现象。
(2)强度较高且完整的弹脆性岩体过渡受力后突然发生岩石弹射变形所引起的围岩压力。
39、膨胀围岩压力:在遇到水分的条件下围岩常常发生不失去整体性的膨胀变形和位移,表现在顶板下沉、地板隆起和两帮挤出,并在支护结构上形成形变压力的现象。
40、应力集中:受力物体或构件在其形状或尺寸突然改变之处引起应力在局部范围内显著增大的现象。
41、应力集中系数:指岩体中二次应力与原始应力的比值,也可用井巷开挖后围岩中应力与开挖前应力的比值来表示。
42、围岩(弹性)抗力系数:促使隧洞洞壁围岩产生单位径向位移所需要的内水压力值:
第 10 页
K=P/Δα,P:隧洞受到来自隧洞内部的压力,洞壁围岩向外产生一定的位移Δα。
43、单位抗力系数:在工程上规定洞径为200cm时隧洞围岩的抗力系数定义为单位抗力系数。
44、岩体力学研究方法:工程地质研究法,试验法,数学力学分析法,综合分析法
45、岩块:不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。
46、岩块构造:岩石内矿物颗粒的大小、形状、排列方式及微结构面发育情况与粒间连结的方式等反映在岩块构成上的特征。
47、粒间连结方式:结晶连结、胶结连结(硅质胶结的强度>铁质、钙质>泥质;基底式胶结>孔隙式>接触式)。
第 11 页
48、岩块构造:矿物集合体间及其与其他组分之间的排列组合方式。
49、剪胀效应(爬坡效应):当法向应力较小时,在剪切过程中,上盘岩体主要是沿结构面产生滑动破坏。
50、啃断效应:当法向应力达到一定值后,破坏沿结构面滑动转化为剪断凸起而破坏。
51、法向刚度:在法向应力的作用下,结构面产生单位法向变形所需要的应力。填空:
1、影响蠕变性质的因素:岩性、应力、温湿度。
2、岩石的块体密度可采用规则试件的量积法,不规则试件的蜡封法测定。
3、岩石的颗粒密度属于实测指标,常用比重
第 12 页
瓶法进行测量。
4、岩石的弹性变形特性常用弹性模量和泊松比两个常数来表示。当这两个常数为已知时,就可用三维应力条件下的广义胡克定律计算出给定应力状态下的变形。
5、岩石的变形性质按卸荷后变形是否可以恢复可分为弹性变形和塑性变形两类。
6、岩石的破坏是指岩石材料的应力超过了岩石的极限或者变形超过了岩石的使用限制。
7、岩石的力学性质可分为变形性质和强度性质两类,变形性质主要通过本构关系来反映,强度性质主要通过强度理论来反映。
8、岩石的流变主要包括蠕变、松弛和弹性后效。
第 13 页
9、根据变形速率的不同特点,软弱岩石的典型流变曲线可以划分为瞬时蠕变阶段、初始蠕变阶段、等速蠕变阶段和加速蠕变阶段三个阶段。
10、在岩石的流变试验中,可以根据作用在岩石试件上应力或荷载大小的不同,将岩石蠕变曲线分为稳定蠕变曲线和加速发展蠕变曲线两类。
11、研究岩石变形的时间效应,一般而言采用两种方法寻找其蠕变规律,即经验方法和蠕
变模型方法。
12、对于初始蠕变和等速蠕变,目前的经验方程主要有三种,即幂函数、对数函数和指数函数。
第 14 页
13、岩石流变的Maxwall模型是由弹性体和粘性体串联而成,其能反应岩石的弹—粘弹性特征。
14、对于常见的岩石而言,当围压一定时,随着温度的升高,岩石的延性将增加,并且将会出现屈服现象,同时其强度降低。
15、根据延性度的不同,岩石的破坏可分为脆性破坏、延性破坏和过渡性破坏。
16、按照岩石在变形过程中所表现出来的应力—应变—时间关系的不同,可以将岩石的变形划分为弹性变形、塑性变形和粘性变形三种形式各异的基本变性作用。
17、大量的实验和观察证明,就破坏形式而言,岩石的破坏主要有脆性破坏、延性破坏和弱面剪性破坏。
第 15 页
18、在岩石室内压缩试验中,岩石峰值后的荷载—位移曲线,实质上是岩石的破坏过程曲线。
19、目前,实验室抗拉强度的测定常采用劈裂法进行,当用长度为L,直径为D的圆形试件进行试验时,在压力P max作用下,岩石发生了破坏,则此岩石试件的抗拉强度为2P max/πLD;如采用边长为a的立方块,则其抗拉强度为Pt=2P max/πa²。
20、岩石的室内剪切试验常用的仪器有直剪仪、变角板剪力仪和岩石三轴试验机。
21、岩体是指经历过多次地质作用,经历过变形,遭受过破坏,形成了一定的岩石成分和结构,赋存于一定地地质环境中的地质体。因此,岩体力学性质与岩体中的结构面
第 16 页
结构体(岩块)以及赋存条件(环境)密切相关。
22、在工程岩体范围内,结构面按贯通情况可分为贯通性、半贯通性以及非贯通性三种类型。
23、岩体抵抗外力作用的能力称为岩体的力学性质。它包括岩体的稳定特征、变性特征和强度特征等。
24、岩体结构面的剪切变形与岩石的强度、结构面的粗糙程度和法向应力有关。
25、岩体结构面的几何特性是反映节理的外貌,它的组成要素包括:走向、倾向、连续性、粗糙度以及起伏度和组合关系。
26、岩体的力学性质不仅取决于岩石本身及
第 17 页
结构面的力学性质,也与结构面的空间组合密切相关。
27、岩体的强度不仅与组成岩体的岩石的性质有关,而且与岩体内的软弱结构面有关,此外还与岩体所受的应力状态有关。
28、岩体中存在各种结构面,结构面的变形大小主要由结构面和结构面填充物控制的。
29、大量的岩体实验表明,岩体的压力——变形曲线可以化分为四种类型,即:直线型、上凹型和下凹型、复合型。
30、岩体变形的结构效应是指岩体结构对其变形性质的影响与控制作用,包括结构面、结构体以及两者的组合关系三个方面,其结构面对岩体变形的作用效应尤为突出。
第 18 页
31、粗糙起伏无充填的规则锯齿状结构面的剪切机制一方面是爬坡摩擦效应;另一方面是凸起体剪切。
32、岩体基本质量应由受岩石的坚硬程度和岩石的完整性程度两个因素确定。
33、国际《工程岩体分级标准》规定,对岩石坚硬程度和岩体完整程度应采用定性划分和定量指标两种方法确定。
34、当人类还不能对原岩应力进行测量之前,认为原岩应力是由岩土自重引起的,因此把原岩应力单纯的看成自重应力。
35、近期地质力学的观点认为,从全球范围来看,构造应力的总规律是以水平应力为主。根
第 19 页
据地质构造运动的发展阶段,一般可把构造应力分为以下三种阶段原始构造应力,残余构造应力,现代构造应力。
36、影响原岩应力分布的因素有地形,岩体结构面,岩体力学性质,剥蚀作用,
37、重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。
38、岩体天然应力测量方法主要包括:水压致裂法,扁千斤顶法和钻孔套心应力解除法。
39、地质构造运动的结果,使构造应力的特点主要表现在具有强烈方向性,数值较大的水平应力,从而形成构造区域水平应力大于垂直应力的情况。、
第 20 页
40、原岩应力主要由自重应力和构造应力组成。
41、研究岩石应力状态的目的在于正确认识岩石的力学性能,阐述围岩的破坏机制,充分利用和发挥围岩的自承能力,是工程设计更加合理安全和经济。
42、岩体变形的不均匀导致围岩局部破裂的原因是应力分布的不均匀性和强度不均匀性。
43、岩石在三轴压缩时,随着侧向应力σ3和σ1—σ3的增加,岩石强度也随之增大:岩石发生破坏后,仍保留一定的承载能力。
44、隧洞根据其内部的受力情况可分为有压洞室和无压洞室两大类。
第 21 页
45、对于无衬砌有压洞室,洞内水压力P在围岩中所产生的径向和切向应力随隧洞半径r 的增大而迅速降低,在6r处该应力基本可以忽略不计,在有些有压隧洞中常见到新形成的,平行于洞轴线的放射状张裂隙,这主要是由于内水压力使围岩产生的应力抵消了围岩的压应力,并超过了岩体的抗拉强度所致。
46、围岩在不产生破坏的条件下,当岩石性质由硬岩,中硬岩,到软岩的变化过程中,对于同一种支护形式而言,围岩位移增长会越来越大,相应要求支护结构所承担的压力会越来越大,对于同一种岩石来说,随围岩的不断变化要求支护结构所承担的压力会越来越小。解
1、在三轴试验中,围压对岩石的力学性质有
第 22 页
什么影响
(1)破坏前岩块的总应变随围压增大而增加
(2)随围压增大,岩块的塑性也不断增大,且由脆性破坏逐渐转化为延性破坏
(3)随围压的增大,岩块三轴极限强度明显增大
(4)随围压增大,弹性模量和泊松比不同程度的提高
(5)当围压达到一定值时,出现应变硬化现象
2、结构面的成因类型与分类
结构面的成因分为两类:地质成因和力学分类:
(1)地质成因类型包括原生结构面(沉
第 23 页
积结构面、岩浆结构面、变质结构面)构造结构面(断层、节理、劈理和层间错动面)次生结构面(卸荷裂隙、风化裂隙、次生夹泄层、泥化夹层)(2)力学成因类型有剪性结构面(逆断层、平移断层、多数正断层)张性结构面(羽状张裂面、纵张及横张破裂面和岩浆岩中的冷凝节理)
3、结构面的分级:由结构面的伸长度、切割深度、破碎带宽度及其力学效应可分为5级:
1、级指大断层或区域性断层,延伸数公里至数十公里以上破碎宽约数米至几百米以上;
2、级指延伸长、宽度不大数百米至数千米,宽数十厘米至数米;
3、级长数十米至数百米的断层、区域性节理、延伸较好的层面及层间错动等,宽数厘米至一米左右;
4、级延伸较差的节理、层面等长一般10mm~30mm,宽数厘
第 24 页
米;
5、级微结构面有隐节理、微层面等。规模小、连续性差、常包含在岩块内。
4、结构面特征及其影响:产状(结构面与最大主应力间的关系控制着岩体的破坏机制与强度)、连续性(对岩体的变形、变形破坏机理、强度及渗透性都有很大影响)、密度(控制
着岩体的完整性和岩块的块度,密度越大,岩体完整性越差,块度越小,导致岩体力学性质变差,渗透性增强)、张开度、形态(对岩体的力学性质及水力学性质存在明显影响)、充填胶结特征(经胶结的结构面力学性质改善,未胶结的力学性质取决于充填物成分、厚度、含水性和壁岩性质等)、结构面的组合关系(控制着可能滑移岩体的几何边界条件、形态、规模、滑动方向及滑移
第 25 页
破坏类型)。
5、岩块的力学属性:弹性、塑性、粘性、脆性、延性。
(1)弹性:在一定应力范围内,物体受外力作用产生全部变形,而去除外力后能立即恢复其原有形状和尺寸大小的性质。
(2)塑性:物体受力后产生变形,外力去除后不能完全恢复的性质。不能恢复的那部分变形称为塑性变形或永久变形或残余变形。
(3)粘性:物体受力后,变形不能瞬时完成,且变形速率随应力增加而增加的性质。
(4)脆性:物体受力后,变形很小时就发生破裂的性质。
(5)延性:物体能承受较大塑性变形而不丧失其承载力的性质。
第 26 页
6、单轴压缩应力-应变曲线:εv=εl+εd
阶段:Ⅰ:孔隙裂隙压密阶段:原有张开性结构面或微裂隙逐渐闭合,岩石被压密,早期非线性变形,呈上凹形,斜率随应力增大而增大,微裂隙的闭合在开始较快随后逐渐下降。Ⅱ:弹性变形至为微破裂稳定发展阶段:近似直线,开始为直线,应力增加,变为曲线,出现弹性极限,之后为塑性变形,出现新裂隙和微破裂,随着应力发展而发展,达到屈服极限。Ⅲ:非稳定破裂发展阶段:破裂不断发展,薄弱部位首先破坏,应力重分布,次薄弱部位破坏,体积压缩转为扩容,达到峰值强度或单轴抗压强度。Ⅳ:破坏后阶段:裂隙快速发展,交叉且联合成宏观断裂面,岩块沿其滑移,试件承载力迅速下降但不为0。
第 27 页
7、变形参数:
变形模量(弹性模量):单轴压缩条件下,轴向压应力与轴向压应变之比。E=σ/ε
初始模量:曲线原点处的切线斜率,Ei=σi/εi
切线模量:曲线上任一点处的切线斜率,Et=(σ2-σ1)/( ε1-ε2)
割线模量:曲线上某特定点原点连线的斜率,通常取σc/2处的点与原点连线的斜率,Es=σ50/ε50
泊松比:单轴压缩条件下,横向应变与轴向应变之比,μ=-εd/εl
8、结构面的强度性质分类:平直无充填的结构面、粗糙起伏无充填~、非贯通断续~、有充填的软弱结构面。
第 28 页
9、岩体中天然应力的分布特征
1)重力应力场与构造应力场的分布特点①重力应力场:以垂直应力为主,垂直应力大于水平应力;应力为压应力;应力随深度增加而增加;
②构造应力场:应力有压应力,也可有拉应力;以水平应力为主,水平应力大于垂直应力;分布很不均匀,通常以地壳浅部为主。2)地壳浅部3km原岩应力的规律:原岩应力是非稳定的应力场,其大小和方向随空间和时间而变化;实测垂直应力基本上等于上覆岩体的重力;水平应力普遍大于垂直应力。10、各类结构围岩的变形破坏特点
(1)整体状和块状岩体围岩:破坏形式主要有岩爆、脆性开裂及块体滑移等。
(2)层状岩体围岩:破坏形式主要有:沿层面张裂、折断塌落、弯折内鼓等。
第 29 页
(3)碎裂状岩体围岩:变形破坏形式常表现为塌方和滑动。
(4)散体状岩体围岩:其变形破坏形式以拱形冒落为主。
11、岩爆的产生条件
(1)围岩应力条件。判断岩爆发生的应力条件有两种方法:
一是用洞壁的最大环向应力
σθ与围岩单轴抗压强度σc之比作为岩爆产生的应力条件;另一种是用天然应力中的
目前进行土体力学分析时,一般都采用连续介质力学方法,多数情况下这是对的。可是在有一些情况下就不对,如在边坡和地下洞室中,常常见到块体塌方和黄土直立边坡崩塌破坏,这就不能用连续介质力学模型能处理的。它们是属于块裂介质力学,因此在进行土体力学分析时必须根据土体结构和土体赋存环境条件分析其力学介质,结合土体工程特点,给出合适的力学模型进行分析才能取得符合实际结果,不能千篇一律地都采用连续介质力学方法进行分析。根据土体结构及土体在环境应力改变时,其力学作用方式和规律类型的不同,可将土体划分为若干土体力学介质力质。根据作者的经验和认识,目前可将土体划分为三种力学介质:
①连续介质;
②楔形体块裂介质;
③柱状体块裂介质。划分条件及其力学作用规律示于表4-3,这是土体力学分析的基本依据。
表4-3 土体力学介质划分
1土体地基工程变形分析方法
地基工程变形是土力学讨论十分深入的一个问题。一般来说,地基变形可用下面方法估算。这个方法不论对均质土体或者是不均质土体地基都适用,这个方法称为分层总合法。具体方法如下:
(1)将变形土体分成适当数目的水平层,对多层结构土体来说,可对应土层界面及应力变化点来分层(图4-8)。
(2)计算每一水平层的有效附加应力。为实用起见,每层值可取在该层中心深度处。
(3)计算每一水平层的附加垂直应力平均值。如果每层厚度与地基宽比较起来很小的话,Δσz的平均值可以取分层的中心深度应力值。因为应力分布与土体特性无关,故均质土体和多层土体内应力计算可用同样方法。
图4-8 固结沉降计算草图
(4)计算由于附加垂直应力引起的每一水平层厚度的压缩量ΔH:
地质工程学原理
或
地质工程学原理
(5)基础下任一深度处沉降变形一等于这一点以上各水平层沉降变量为之和,即
地质工程学原理
这个方法把不均匀性影响考虑进去了,是目前估算地基工程变形比较通用的方法。
2土体边坡工程稳定性分析方法
目前土体边坡稳定性分析方法有许多种,最常用的是圆弧滑动面法。1958~1960年,著者在西北黄土区进行渠道地质工程建设研究过程中,曾对西北黄土边坡力学问题进行过一系列的调查研究,收集了大量的边坡破坏资料。对所收集的资料进行分析后得到了一个重要认识,即西北黄土边坡产生滑坡的力学过程是:上部土体塌落,边坡部分土体受挤压而产生滑落。这一过程的力学机理可用图4-9来说明,上部为塌落应力区,下部为滑落应力区,中间为过渡区。塌落区内应力σ1方向大致与地面垂直,滑落区内应力σ1方向大致与边坡面平行。根据土体平衡理论,塌落应力区破裂面与σ1方向成45-ψ/2角,ψ为抗剪角;滑落应力区破裂面与σ1成45-ψ/2角,在边坡情况下则与边坡面成45-ψ/2角;过渡区为共轭破裂面交角,即(45-ψ/2)+(45-ψ/2)=90-ψ。据此可以绘制出土体边坡理论破裂面轮廓。在理论上,土体内理论破裂面不是一条,而是一组(图4-10)。当土体某一个或几个理论破裂面失稳时便产生滑坡,边坡产生破坏。图4-11是这个理论的一个例证。该边坡内同时有三个破裂面达到破坏条件,因此产生了三个台阶状破坏。由此可知,在进行边坡稳定性分析时,不能仅核算通过坡脚的理论破裂而产生边坡破坏可能性问题,而且应该对如图4-10所示的各个理论破裂面破坏可能性进行核算,找出最危险或者说稳定性最低的破裂面,给出稳定性系数,评价边坡稳定性。下面具体谈一下理论破裂面图解法绘制方法。如图4-12所示:
图4-9 边坡土体滑坡作用的力学机理草图
图4-10 黄土边坡的理论破裂面组合
图4-11-宝鸡瞿家台黄土边坡的破坏(坡高18m)
图4-12 宝鸡瞿家台黄土边坡稳定性核算结果
(1)按比例作出边坡几何外形AOD。
(2)利用抗剪试验结果,求出不同深度处抗剪角,注于高程坐标尺上,抗剪角ψ既可以利用公式
地质工程学原理
计算,亦可以用图解法求得。
(3)利用高度坐标尺上注的抗剪角ψ,分段作理论破裂面AB,OC及DC,OB、AB段理论破裂面与边坡面成45-ψ/2,OC,DC段理论破裂面与垂直方向成45-ψ/2角。将BC间划分为若干等份并与O点联线,由B点向上依次作90-ψ包线,交OC线于C点再由C点向上作DC线。至此即完成一条理论破裂面曲线。
图4-12为瞿家台黄土边坡稳定性核算绘制的理论破裂面,绘制的理论破裂面与图4-11所示的实测结果基本一致。绘制的理论破裂面上部为90°,迅速转变为80°,中部为65°,下部为45°;图4-11所示的实测剖面的上部为80°~90°,中部为65°,下部为45°。显然,上述方法是可信的。有了上述的理论破裂面,就可以利用图解法或代数法求各个理论破裂面的稳定性,核算边坡稳定性。上面介绍的是完整结构土体边坡稳定性分析方法。对完整土体来说这个方法是可信的,当土体内发育有软弱层面或节理面的情况下就不行了。常见的受软弱层面和节理面控制下的破坏有如下两种情况:
(1)如图4-13a所示的受软弱层面和节理面控制下破坏;
(2)如图4-13b所示受垂直节理或裂缝控制下的塌落。
图4-13 破坏力学示意图
这两种边坡破坏类型不仅见于黄土区,而在许多黏性土地区也常见到。受构造节理和软弱层面控制产生的破坏系沿弱面下滑。它完全符合库仑定律,可以很简单地利用斜面滑动极限平衡原理分析边坡稳定性。问题在于在野外就要鉴别出这种地质模型。有了地质模型,就可以很容易转化为力学模型,力学计算是很简单的,可用公式(4 34)进行。
图4-13b所示的垂直裂缝控制下的边坡塌落条件,可以通过坡脚土体压致拉裂破坏判据来分析其稳定性,即
地质工程学原理
式中:σc为土体单轴抗压强度;γi,hi为各分层土体重度及分层厚度。
土体边坡稳定性分析的关键是搞清地质模型,合理的抽象出力学模型,选定合理的力学参数,计算工作并不复杂。而目前一种偏向是计算理论研究得很深,选用的力学模型和力学参数并不符合土体的地质实际,所取得的结果常常不符合实际。
3土体中洞室稳定性分析方法
土体中修建地下洞室,如隧道、土库等稳定性问题很早就进行过研究。这些研究出发点都是以洞顶塌落土体作为支护的外载,从而形成了地下工程建筑中的荷载支护体系的观念。好像地下工程建筑中的主要土体力学问题,就是寻求给出洞顶土体塌落高度。因此,很多人都在研究洞顶土体塌落高度计算公式。这些研究结果中最有名的要算普氏塌落拱理论,它曾控制达半个世纪之久。现将普氏理论主要内容介绍如下。
图4-14 普氏塌落拱力学模型
普氏塌落拱模型如图4-14所示,他的理论的基本点如下:
(1)普氏定义土体抗剪角为土体强度系数,通常称为普氏系数,即
f=tanψ=tanφ+C σn(4-39)
(2)设洞室宽度为2b1,洞室高度为h,塌落拱宽度为2b2 ,支持拱脚的土体与洞壁成45°-角,则塌落拱半宽为b2:
地质工程学原理
(3)塌落拱力学平衡条件为
地质工程学原理
式中:T为水平反力;F为附加抗剪力。
地质工程学原理
(4)当时x=b2时y=hg,则式(4-41)变为
地质工程学原理
将上列结果代入式(4-43)得
地质工程学原理
(5)对hg取极值得
地质工程学原理
(6)由式(4-47)得知,任一点土压力为
地质工程学原理
而最大土压力为
地质工程学原理
在地下工程设计时,则取σvmax作为土压力,设计衬砌厚度。
这个理论有什么优缺点在地下工程设计中可否应用著者认为,首先应该肯定一下,这个理论有可取之处。因为在土体中修建地下洞室,不管是人工的,还是自然的,其稳定的洞形的洞顶都是呈拱形。这就为塌落拱理论提供了实际依据。这证明在地下洞室稳定性核算时,用普氏理论是可行的,但是普氏理论在岩体力学中的应用是不符合实际的。另外,仅有这一点还是不够的。地下洞室埋深较大时,在施工过程中常常出现有流动变形,即不停止的变形。这是为什么,普氏理论就回答不了这个问题。这个问题与土体中应力有关,下面讨论一下这个问题。
应力极限平衡理论如图4-15所示,P0为土体中垂直应力,λP0为土体中水平应力,地下洞室周围土体内应力分布遵循下列规律:
图4-15 在环境应力作用下隧洞周围土体内应力分布计算草图
地质工程学原理
土体稳定性最低部位位于洞壁处,即r=a处。如此,求得洞壁土体内应力为
地质工程学原理
当θ=90°时有极值,则
地质工程学原理
土体内部变形破坏基本上处于塑性状态,其破坏判据为
地质工程学原理
洞壁处σ1=σt,σ3=σr=0,如此,极限平衡条件为
地质工程学原理
即当实际地应力大于P0时将出现破坏和流动变形。如果P0=γh,则洞壁不产生破坏的最大深度为
地质工程学原理
上述表明,地下洞室稳定性受两个条件控制:
①受塌落拱高度形成的土压力控制;
②受洞壁土体极限条件控制。第一个条件可用普氏理论计算,第二个条件可用上面推导的极限深度公式估算。
上面讨论的是完整土体中地下洞室建筑问题。当土体内发育有软弱层面和构造节理时,深埋地下的土体开挖暴露风化后,洞壁土体将沿软弱层面和节理面产生塌落(图4-16),在这种情况下仅用上面方法分析洞室稳定性是不够的。因为在未开挖前土体处于潮湿状态下,节理面不起作用,可作为连续介质看待,可利用上述理论分析洞室稳定性;如果土体失水处于干硬状态,节理面将起作用,这种情况下,可利用岩体结构力学中块体介质力学理论和方法分析。土体力学有时也受结构控制,这一点在实际工作中应该重视。
图4-16 腰岘河隧道DK613+350下导洞开挖面素描图(据钟世航,1984)
以上就是关于岩土物理力学性质试验全部的内容,包括:岩土物理力学性质试验、岩土力学到底学什么、从工程的观点看,岩体力学的研究内容有哪几个方面等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!