储存于密闭容器中的易燃液体受热后,本身体积增大,这一特性是液体的()。
A、易燃性
B、蒸气的爆炸性
C、受热膨胀性
D、流动性
【正确答案:C】
本题考查的是易燃液体的火灾危险性。易燃液体也有受热膨胀性,储存于密闭容器中的易燃液体受热后,本身体积膨胀的同时蒸气压力增加。故本题答案为C。
易燃液体的特性:
一、易燃性
易燃液体的燃烧是通过其挥发的蒸气与空气形成可燃混合物,达到一定的浓度后遇火源而实现的,实质上是液体蒸气与氧发生的氧化反应。由于易燃液体的沸点都很低,易燃液体很轻易挥发出易燃蒸气,其着火所需的能量极小,因此,易燃液体都具有高度的易燃性。 二、蒸气的爆炸性
由于易燃液体具有挥发性,挥发的蒸气易与空气形成爆炸性混合物,所以易燃液体存在着爆炸的危险性。挥发性越强,爆炸的危险就越大。不同的液体的蒸发速度因温度、沸点、比重、压力的不同而发生变化。
三、热膨胀性
易燃液体和其他液体一样,也有受热膨胀性。储存于密闭容器中的易燃液体受热后,体积膨胀,蒸气压力增加,若超过容器的压力限度,就会造成容器膨胀,以致爆破。因此,利用易燃液体的热膨胀性,可以对易燃液体的容器进行检查,检查容器是否留有不少于5%的空隙,夏天是否储存在阴凉处或是否采取了降温措施加以保护。
四、活动性
易燃液体的粘度一般都很小,不仅本身极易活动,还因渗透、浸润及毛细现象等作用,即使容器只有极细微裂纹,易燃液体也会渗出容器壁外,扩大面积,并源源不断地挥发,使空气中的易燃液体蒸气浓度增高,从而增加了燃烧爆炸的危险性。
五、静电性
多数易燃液体都是电介质,在灌注、输送、活动过程中能够产生静电,静电积聚到一定程度时就会放电,引起着火或爆炸。易燃液体的静电特性,在实际的消防监视检查中,可以确定易燃液体的火灾危险性,可以检查是否采取了消除静电危害的防范措施,如是否采用材质好且光滑的运输管道,设备、管道是否可靠接地,对流速是否加以了限制等。 毒害性
易燃液体大多本身(或蒸气)具有毒害性。不饱合、芳香族碳氢化合物和易蒸发的石油产品比饱和的碳氢化合物、不易挥发的石油产品的毒性大。
六、其他
另外,有些易燃液体,如石油产品等,还具有沸溢喷溅性,即具有宽沸点范围的重质油品,由于其粘度大,油品中含有乳化或悬浮状态的水或者在油层下有水层,发生火灾后,在辐射热的作用下产生高温层作用,导致油品发生沸溢或喷溅。沸溢性油品是指含水率为0.3%~4%的原油、渣油、重油等油品。
易燃液体的特性(一)高度易燃性易燃液体的主要特性是具有高度易燃性,其原因主要是:第一,易燃液体几乎全部是有机化合物,分子组成中主要含有碳原子和氢原子,易和氧反应而燃烧。第二,由于易燃液体的闪点低,其燃点也低(燃点一般约高于闪点1~5℃),因此易燃液体接触火源极易着火而持续燃烧。(二)易爆性易燃液体挥发性大,当盛放易燃液体的容器有某种破损或不密封时,挥发出来的易燃蒸气扩散到存放或运载该物品的库房或车箱的整个空间,与空气混合,当浓度达到一定范围,即达到爆炸极限时,遇明火或火花即能引起爆炸。易燃和可燃的气体、液体蒸气、固体粉尘与空气混合后,遇火源能够引起燃烧爆炸的浓度范围称为爆炸极限。一般用该气体或蒸气在混合气体中的体积百分比(%)来表示,粉尘的爆炸极限用mg/m3表示。能引起燃烧爆炸的最低浓度称为爆炸下限。能引起燃烧爆炸的最高浓度称为爆炸上限。当可燃气体或易燃液体的蒸气在空气中的浓度小于爆炸下限时,由于可燃物量不足,并因含有较多的空气,燃烧不会发生也就不会爆炸;当浓度大于爆炸上限时,则因空气量不足,燃烧不能发生,也不会爆炸。只有在上限与下限浓度范围内,遇到火种才会爆炸。因此,凡是爆炸极限范围越大,爆炸下限越低的物质,它的危险性就越大。(三)高度流动扩散性易燃液体的分子多为非极性分子,粘度一般都很小,不仅本身极易流动,还因渗透、浸润及毛细现象等作用,即使容器只有极细微裂纹,易燃液体也会渗出容器壁外,扩大其表面积,并源源不断地挥发,使空气中的易燃液体蒸气浓度增高,从而增加了燃烧爆炸的危险性。(四)受热膨胀性易燃液体的膨胀系数比较大,受热后体积容易膨胀,同时其蒸气压亦随之升高,从而使密封容器中内部压力增大,造成“鼓桶”,甚至爆裂,在容器爆裂时会产生火花而引起燃烧爆炸。因此,易燃液体应避热存放,灌装时容器内应留有5%以上的空隙,不可灌满。(五)忌氧化剂和酸易燃液体与氧化剂或有氧化性的酸类(特别是硝酸)接触,能发生剧烈反应而引起燃烧爆炸。这是因为易燃液体都是有机化合物,能与氧化剂发生氧化反应并产生大量的热,使温度升高到燃点引起燃烧爆炸。例如:乙醇与氧化剂高锰酸钾接触会发生燃烧,与氧化性酸(硝酸)接触也会发生燃烧,松节油遇硝酸立即燃烧。因此,易燃液体不得与氧化剂及有氧化性的酸类接触。(六)毒性大多数易燃液体及其蒸气均有不同程度的毒性,例如:甲醇、苯、二硫化碳等。不但吸入其蒸气会中毒,有的经皮肤吸收也会造成中毒事故。应注意劳动防护。
液体热胀冷缩的性质,是指物体受热时会膨胀,遇冷时会收缩的特性。由于物体内的粒子(原子)运动会随温度改变,当温度上升时,粒子的振动幅度加大,令物体膨胀。
但当温度下降时,粒子的振动幅度便会减少,使物体收缩。水(4°C以下)、锑、铋、镓和青铜等物质,在某些温度范围内受热时收缩,遇冷时会膨胀,恰与一般物体特性相反。因此,水结冰时,冰是先在水面出现。
扩展资料:
水在由0℃温度升高时,出现了一种特殊的现象。人们通过实验得到了ρ-t曲线,即水的密度随温度变化的曲线。
在温度由0℃上升到4℃的过程中,水的密度逐渐加大;温度由4℃继续上升的过程中,水的密度逐渐减小;水在4℃时的密度最大。水在0℃至4℃的范围内,呈现出“冷胀热缩”的现象,称为反常膨胀。水的反常膨胀现象可以用氢键、缔合水分子理论予以解释。
多个水分子组合时,除了呈六角形外(如雪花、窗花),还可能形成立体形点阵结构(属六方晶系)。每一个水分子都通过氢键,与周围四个水分子组合在一起。边缘的四个水分子也按照同样的规律再与其他的水分子组合,形成一个多分子的缔合水分子。
缔合水分子中,每一个氧原子周围都有——4个氢原子,其中两个氢原子较近一些,与氧原子之间是共价键,组成水分子;另外两个氢原子属于其他水分子,靠氢键与这个水分子组合在一起。
可以看出,这种多个分子组合成的缔合水分子中的水分于排列得比较松散,分子的间距比较大。由于氢键具有一定的方向性,因此在单个水分子组合为缔合水分子后,水的结构发生了变化。一是缔合水分子中的各单个分子排列有序,二是各分子间的距离变大。
参考资料:
百度百科-热胀冷缩
百度百科-冷胀热缩