当前位置:首页 建筑知识 高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:

高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:

发布时间:2023-03-03 04:16:43

高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:

A 、(n+1)/n倍

高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:

B 、(n-1)/n倍

C 、n倍

D 、n-1倍

参考答案

【正确答案:C】

由n卡=1-T低/T高=1-Q放/Q吸,知Q吸/Q放= T高/T低=n。

设高温热源的热力学是低温热源热力学温度的N倍

Q吸/T高=Q放/T低,所以Q放/Q吸=1/N

卡诺循环全由可逆过程组成,其中包括:

图一A→B、图二1→2,可逆等温膨胀:此等温的过程中系统从高温热库吸收了热量且全部拿去作功。图一B→C、图二2→3,等熵(可逆绝热)膨胀:移开热库,系统对环境做功,其能量来自于本身的内能。图一C→D、图二3→4,可逆等温压缩:此等温的过程中系统向低温热库放出了热量。同时环境对系统做正功。图一D→A、图二4→1,等熵(可逆绝热)压缩:移开低温热库,此绝热的过程系统对环境作负功,系统在此过程后回到原来的状态。

卡诺热机的热效率只取决于第一个状态的温度T1与第二个状态的温度T2,以及从环境中吸收的热量Q1和放出的热量Q2,

其热效率η=

其热效率恒小于1,只和高温和低温的热源有关,两者温差越大,效率越高。

热机的疑问!!!

热机并不单单是把能量转化为机械能。热机是指从高温热源吸收热量,对外做工后向低温热源放出热量的机器。热机的效率计算不像楼上说的那么简单。在所有热机中效率最高的是卡诺循环。所以,即使没有摩擦和热散失,热机的效率也不可能高过同等情况的卡诺循环的效率。关于卡诺循环的原理见下。

卡诺循环(Carnot cycle) 是由法国工程师尼古拉·莱昂纳尔·萨迪·卡诺于1824年提出的,以分析热机的工作过程,卡诺循环包括四个步骤: 等温膨胀, 绝热膨胀,等温压缩,绝热压缩。即理想气体从状态1(P1,V1,T1)等温膨胀到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温压缩到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1。这种由两个等温过程和两个绝热过程所构成的循环成为卡诺循环。简介

卡诺循环包括四个步骤:等温膨胀,在这个过程中系统从环境中吸收热量; 绝热膨胀,在这

卡诺循环

个过程中系统对环境作功; 等温压缩,在这个过程中系统向环境中放出热量; 绝热压缩,系统恢复原来状态,在这个过程中系统对环境作负功。卡诺循环可以想象为是工作与两个恒温热源之间的准静态过程,其高温热源的温度为T1,低温热源的温度为T2。这一概念是1824年N.L.S.卡诺在对热机的最大可能效 率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、摩擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机[1]。

编辑本段

原理

卡诺循环的效率

通过热力学相关定理我们可以得出,卡诺循环的效率ηc=1-T2/T1,由此可以看出,

高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:

卡诺循环

卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。因为不能获得T1→∞的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。

任何工作物质作卡诺循环,其效率都一致

可以证明,以任何工作物质作卡诺循环,其效率都一致;还可以证明,所有实际循环的效率都低于同样条件下卡诺循环的效率,也就是说,如果高温热源和低温热源的温度确定之后卡诺循环的效率是在它们之间工作的一切热机的最高效率界限。因此,提高热机的效率,应努力提高高温热源的温度和降低低温热源的温度,低温热源通常是周围环境,降低环境的温度难度大、成本高,是不足取的办法。现代热电厂尽量提高水蒸气的温度,使用过热蒸汽推动汽轮机,正是基于这个道理。

提高热机效率的方向

卡诺定理阐明了热机效率的限制,指出了提高热机效率的方向(提高T1,降低T3,减少散热、漏气、摩擦等不可逆损耗,使循环尽量接近卡诺循环)。成为热机研究的理论依据、热机效率的限制。实际热力学过程的不可逆性及其间联系的研究,导致热力学第二定律的建立。在卡诺定理基础上建立的

卡诺循环

与测温物质及测温属性无关的绝对热力学温标,使温度测量建立在客观的基础之上。此外,应用卡诺循环和卡诺定理,还可以研究表面张力、饱和蒸气压与温度的关系及可逆电池的电动势等。还应强调,卡诺这种撇开具体装置和具体工作物质的抽象而普遍的理论研究,已经贯穿在整个热力学的研究之中。

编辑本段

创建背景

19世纪初,蒸汽机在工业、交通运输中的作用越来越重要,但关于控制蒸汽机把热转变为机械运动的各种因素的理论却未形成。法国军事工程师萨迪?卡诺(S. Carnot,1796—1832)于1824年出版了《关于火的动力的思考》一书,总结了他早期的研究成果。卡诺以找出热机不完善性的原因作为研究的出发点,阐明从热机中获得动力的条件就能够改进热机的效率。卡诺分析了蒸汽机的基本结构和工作过程

卡诺循环

,撇开一切次要因素,由理想循环入手,以普遍理论的形式,作出关于消耗热而得到机械功的结论。他指出,热机必须在高温热源和低温热源之间工作,“凡是有温度差的地方就能够产生动力;反之,凡能够消耗这个力的地方就能够形成温度差,就可能破坏热质的平衡。”他构造了在加热器与冷凝器之间的一个理想循环:汽缸与加热器相连,汽缸内的工作物质水和饱和蒸汽就与加热器的温度相同,汽缸内的蒸汽如此缓慢地膨胀着,以致在整个过程中,蒸汽和水都处于热平衡。然后使汽缸与加热器隔绝,蒸汽绝热膨胀到温度降至与冷凝器的温度相同为止。然后活塞缓慢压缩蒸汽,经过一段时间后汽缸与冷凝器脱离,作绝热压缩直到回复原来的状态。这是由两个等温过程和两个绝热过程组成的循环,即后来所称的“卡诺循环”。

卡诺根据热质守恒思想和永动机不可能制成的原理,进一步证明了在相同温度的高温热源和相同温度的低温热源之间工作的一切实际热机,其效率都不会大于在同样的热源之间工作的可逆卡诺热机的效率。卡诺由此推断:理想的可逆卡诺热机的效率有一个极大值,这个极大值仅由加热器和冷凝器的温度决定,一切实际热机的效率都低于这个极值。

编辑本段

卡诺意义

卡诺的研究具有多方面的意义。他的工作为提高热机效率指明了方向;他的结论已经包含了热力学第二定律的基本思想,只是热质观念的阻碍,他未能完全探究到问题的最终答案。由于卡诺英年早逝,他的工作很快被人遗忘。后来,由于法国工程师克拉珀珑(B.P.E.Clapeyron,1799—1864)在1834 年的重新研究和发展,卡诺的理论才为人们所注意。克拉珀珑将卡诺循环在一种“压(力)-容(积)图”上表示出来,并证明卡诺热机在一次循环中所做的功,其数值恰好等于循环曲线所围的面积。克拉珀珑的工作为卡诺理论的进一步发展创造了条件。

大学物理中循环效率η怎么算

热力学中的效率,有一个统一的定义,就是“收获比代价”,就比如为了让热机工作,需要让燃料燃烧,释放热量q1,在热机循环过程中,向大气中排放热量q2。

由能量守恒,热机对外做功q1-q2,则在整个循环过程中,q1就是我们付出的代价,q1-q2就是我们的收获,循环效率就是(q1-q2)除以q1。

高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:

由于工作物质只能与两个热源交换热量,所以可逆的卡诺循环由两个等温过程和两个绝热过程组成。热力学第二定律对所有热机的热效率进行了基本的限制。即使是理想的无摩擦发动机也不能将其100%输入热量的任何地方转换成工作。

扩展资料:

卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度愈高,低温热源的温度愈低,则卡诺循环的效率愈高。所以,卡诺循环的效率必定小于1。

所有实际循环的效率都低于同样条件下卡诺循环的效率,也就是说,如果高温热源和低温热源的温度确定之后卡诺循环的效率是在它们之间工作的一切热机的最高效率界限。

温馨提示:
本文【高温热源的热力学温度是低温热源热力学温度的n倍,则理想气体在一次卡诺循环中,从高温热源吸取的热量与向低温热源放出的热量比是:】由作者 电气工程师考试 转载提供。 该文观点仅代表作者本人, 自学教育网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
(c)2008-2025 自学教育网 All Rights Reserved 汕头市灵创科技有限公司
粤ICP备2024240640号-6