当前位置:首页 建筑知识 有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为(  )。

有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为(  )。

发布时间:2023-03-03 06:24:05

有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为()。

A 、选用1500R/MIN电机

有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为(  )。

B 、将大轮直径缩至0.5倍

C 、小轮直径增至2倍

D 、小轮直径增大25%,大轮直径缩至0.625倍

参考答案

【正确答案:B】

B项,V带的滑动率e=0.01~0.02,其值较小,在一般计算中可不予考虑。则有n1d1=n2d2,带速v=πn1d1/60×1000,现需将从动轮(大带轮)转速提高1倍,最合理的改进方案是将大轮直径缩至0.5倍。AC两项,若选用1500r/min电机,或者将小轮直径增至2倍,则带传动线速度为40m/s。普通V带的带速v应在5~25m/s的范围内,其中以10~20m/s为宜,若v>25m/s,则因带绕过带轮时离心力过大,使带与带轮之间的压紧力减小、摩擦力降低而使传动能力下降,而且离心力过大降低了带的疲劳强度和寿命。D项,将小轮直径增大25%,大轮直径缩至0.625倍不满足设计要求。

同一V带传动,若主动轮转速不变,用于减速(小带轮主动)比用于增速(大带轮主动)所能传递的功率

(1)请注意该带传动主、从动带轮及带条件均为改变。即带传动的包角、带长、f及张紧力等均未改变。即该带传动的有效拉力是相等的。

(2)主动轮转速不变。减速时小带轮为主动,假设其速度为740r/min,增速时,大带轮为主动轮,其转速也应为740r/min。功率是有效拉力与线速度的乘积(v=3.14dn/60),显然,用于增速时大带轮的直径大,转速相同时,线速度大,因而增速时传递的功率较大。

江湖告急-机械设计课程设计 设计传动装置

仅供参考

一、传动方案拟定

第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器

(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。

(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;

滚筒直径D=220mm。

运动简图

二、电动机的选择

1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。

2、确定电动机的功率:

(1)传动装置的总效率:

η总=η带×η2轴承×η齿轮×η联轴器×η滚筒

=0.96×0.992×0.97×0.99×0.95

=0.86

(2)电机所需的工作功率:

Pd=FV/1000η总

=1700×1.4/1000×0.86

=2.76KW

3、确定电动机转速:

滚筒轴的工作转速:

Nw=60×1000V/πD

=60×1000×1.4/π×220

=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min

符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表

方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比

KW 同转 满转 总传动比 带 齿轮

1 Y132s-6 3 1000 960 7.9 3 2.63

2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。

4、确定电动机型号

根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为

Y100l2-4。

其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。

三、计算总传动比及分配各级的传动比

1、总传动比:i总=n电动/n筒=1420/121.5=11.68

2、分配各级传动比

(1) 取i带=3

(2) ∵i总=i齿×i 带π

∴i齿=i总/i带=11.68/3=3.89

四、运动参数及动力参数计算

1、计算各轴转速(r/min)

nI=nm/i带=1420/3=473.33(r/min)

nII=nI/i齿=473.33/3.89=121.67(r/min)

滚筒nw=nII=473.33/3.89=121.67(r/min)

2、 计算各轴的功率(KW)

PI=Pd×η带=2.76×0.96=2.64KW

PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩

Td=9.55Pd/nm=9550×2.76/1420=18.56N?m

TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、传动零件的设计计算

1、 皮带轮传动的设计计算

(1) 选择普通V带截型

由课本[1]P189表10-8得:kA=1.2 P=2.76KW

PC=KAP=1.2×2.76=3.3KW

据PC=3.3KW和n1=473.33r/min

由课本[1]P189图10-12得:选用A型V带

(2) 确定带轮基准直径,并验算带速

由[1]课本P190表10-9,取dd1=95mm>dmin=75

dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm

由课本[1]P190表10-9,取dd2=280

带速V:V=πdd1n1/60×1000

=π×95×1420/60×1000

=7.06m/s

在5~25m/s范围内,带速合适。

(3) 确定带长和中心距

初定中心距a0=500mm

Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0

=2×500+3.14(95+280)+(280-95)2/4×450

=1605.8mm

根据课本[1]表(10-6)选取相近的Ld=1600mm

确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2

=497mm

(4) 验算小带轮包角

α1=1800-57.30 ×(dd2-dd1)/a

=1800-57.30×(280-95)/497

=158.670>1200(适用)

(5) 确定带的根数

单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW

i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW

查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99

Z= PC/[(P1+△P1)KαKL]

=3.3/[(1.4+0.17) ×0.94×0.99]

=2.26 (取3根)

(6)计算轴上压力

由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:

F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN

则作用在轴承的压力FQ

FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)

=791.9N

2、齿轮传动的设计计算

(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常

齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;

精度等级:运输机是一般机器,速度不高,故选8级精度。

(2)按齿面接触疲劳强度设计

由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3

确定有关参数如下:传动比i齿=3.89

取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78

由课本表6-12取φd=1.1

(3)转矩T1

T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm

(4)载荷系数k 取k=1.2

(5)许用接触应力[σH]

[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:

σHlim1=610Mpa σHlim2=500Mpa

接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算

N1=60×473.33×10×300×18=1.36x109

N2=N/i=1.36x109 /3.89=3.4×108

查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05

按一般可靠度要求选取安全系数SHmin=1.0

[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa

[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa

故得:

d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3

=49.04mm

模数:m=d1/Z1=49.04/20=2.45mm

取课本[1]P79标准模数第一数列上的值,m=2.5

(6)校核齿根弯曲疲劳强度

σ bb=2KT1YFS/bmd1

确定有关参数和系数

分度圆直径:d1=mZ1=2.5×20mm=50mm

d2=mZ2=2.5×78mm=195mm

齿宽:b=φdd1=1.1×50mm=55mm

取b2=55mm b1=60mm

(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95

(8)许用弯曲应力[σbb]

根据课本[1]P116:

[σbb]= σbblim YN/SFmin

由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa

由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1

弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1

计算得弯曲疲劳许用应力为

[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa

[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa

校核计算

σbb1=2kT1YFS1/ b1md1=71.86pa<[σbb1]

σbb2=2kT1YFS2/ b2md1=72.61Mpa<[σbb2]

故轮齿齿根弯曲疲劳强度足够

(9)计算齿轮传动的中心矩a

a=(d1+d2)/2= (50+195)/2=122.5mm

(10)计算齿轮的圆周速度V

计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s

因为V<6m/s,故取8级精度合适.

六、轴的设计计算

从动轴设计

1、选择轴的材料 确定许用应力

选轴的材料为45号钢,调质处理。查[2]表13-1可知:

σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa

[σ0]bb=102Mpa,[σ-1]bb=60Mpa

2、按扭转强度估算轴的最小直径

单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,

从结构要求考虑,输出端轴径应最小,最小直径为:

d≥C

查[2]表13-5可得,45钢取C=118

则d≥118×(2.53/121.67)1/3mm=32.44mm

考虑键槽的影响以及联轴器孔径系列标准,取d=35mm

3、齿轮上作用力的计算

齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N

齿轮作用力:

圆周力:Ft=2T/d=2×198582/195N=2036N

径向力:Fr=Fttan200=2036×tan200=741N

4、轴的结构设计

轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。

(1)、联轴器的选择

可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85

(2)、确定轴上零件的位置与固定方式

单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置

在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现

轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴

承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通

过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合

分别实现轴向定位和周向定位

(3)、确定各段轴的直径

将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),

考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm

齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5

满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.

(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.

(5)确定轴各段直径和长度

Ⅰ段:d1=35mm 长度取L1=50mm

II段d2=40mm

初选用6209深沟球轴承,其内径为45mm,

宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:

L2=(2+20+19+55)=96mm

III段直径d3=45mm

L3=L1-L=50-2=48mm

Ⅳ段直径d4=50mm

长度与右面的套筒相同,即L4=20mm

Ⅴ段直径d5=52mm. 长度L5=19mm

由上述轴各段长度可算得轴支承跨距L=96mm

(6)按弯矩复合强度计算

①求分度圆直径:已知d1=195mm

②求转矩:已知T2=198.58N?m

③求圆周力:Ft

根据课本P127(6-34)式得

Ft=2T2/d2=2×198.58/195=2.03N

④求径向力Fr

根据课本P127(6-35)式得

Fr=Ft?tanα=2.03×tan200=0.741N

⑤因为该轴两轴承对称,所以:LA=LB=48mm

有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为(  )。

(1)绘制轴受力简图(如图a)

(2)绘制垂直面弯矩图(如图b)

轴承支反力:

FAY=FBY=Fr/2=0.74/2=0.37N

FAZ=FBZ=Ft/2=2.03/2=1.01N

由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为

MC1=FAyL/2=0.37×96÷2=17.76N?m

截面C在水平面上弯矩为:

MC2=FAZL/2=1.01×96÷2=48.48N?m

(4)绘制合弯矩图(如图d)

MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m

(5)绘制扭矩图(如图e)

转矩:T=9.55×(P2/n2)×106=198.58N?m

(6)绘制当量弯矩图(如图f)

转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:

Mec=[MC2+(αT)2]1/2

=[51.632+(0.2×198.58)2]1/2=65.13N?m

(7)校核危险截面C的强度

由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453

=7.14MPa<[σ-1]b=60MPa

∴该轴强度足够。

主动轴的设计

1、选择轴的材料 确定许用应力

选轴的材料为45号钢,调质处理。查[2]表13-1可知:

σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa

[σ0]bb=102Mpa,[σ-1]bb=60Mpa

2、按扭转强度估算轴的最小直径

单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,

从结构要求考虑,输出端轴径应最小,最小直径为:

d≥C

查[2]表13-5可得,45钢取C=118

则d≥118×(2.64/473.33)1/3mm=20.92mm

考虑键槽的影响以系列标准,取d=22mm

3、齿轮上作用力的计算

齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N

齿轮作用力:

圆周力:Ft=2T/d=2×53265/50N=2130N

径向力:Fr=Fttan200=2130×tan200=775N

确定轴上零件的位置与固定方式

单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置

在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定

,靠平键和过盈配合实现周向固定,两端轴

承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通

过两端轴承盖实现轴向定位,

4 确定轴的各段直径和长度

初选用6206深沟球轴承,其内径为30mm,

宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。

(2)按弯扭复合强度计算

①求分度圆直径:已知d2=50mm

②求转矩:已知T=53.26N?m

③求圆周力Ft:根据课本P127(6-34)式得

Ft=2T3/d2=2×53.26/50=2.13N

④求径向力Fr根据课本P127(6-35)式得

Fr=Ft?tanα=2.13×0.36379=0.76N

⑤∵两轴承对称

∴LA=LB=50mm

(1)求支反力FAX、FBY、FAZ、FBZ

FAX=FBY=Fr/2=0.76/2=0.38N

FAZ=FBZ=Ft/2=2.13/2=1.065N

(2) 截面C在垂直面弯矩为

MC1=FAxL/2=0.38×100/2=19N?m

(3)截面C在水平面弯矩为

MC2=FAZL/2=1.065×100/2=52.5N?m

(4)计算合成弯矩

MC=(MC12+MC22)1/2

=(192+52.52)1/2

=55.83N?m

(5)计算当量弯矩:根据课本P235得α=0.4

Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2

=59.74N?m

(6)校核危险截面C的强度

由式(10-3)

σe=Mec/(0.1d3)=59.74x1000/(0.1×303)

=22.12Mpa<[σ-1]b=60Mpa

∴此轴强度足够

(7) 滚动轴承的选择及校核计算

一从动轴上的轴承

根据根据条件,轴承预计寿命

L'h=10×300×16=48000h

(1)由初选的轴承的型号为 6209,

查[1]表14-19可知d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,

查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N

根据课本P265(11-12)得轴承内部轴向力

FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N

(2) ∵FS1+Fa=FS2 Fa=0

故任意取一端为压紧端,现取1端为压紧端

FA1=FS1=682N FA2=FS2=682N

(3)求系数x、y

FA1/FR1=682N/1038N =0.63

FA2/FR2=682N/1038N =0.63

根据课本P265表(14-14)得e=0.68

FA1/FR1<ex1=1FA2/FR2<ex2=1

y1=0y2=0

(4)计算当量载荷P1、P2

根据课本P264表(14-12)取f P=1.5

根据课本P264(14-7)式得

P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N

P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N

(5)轴承寿命计算

∵P1=P2 故取P=1624N

∵深沟球轴承ε=3

根据手册得6209型的Cr=31500N

由课本P264(14-5)式得

LH=106(ftCr/P)ε/60n

=106(1×31500/1624)3/60X121.67=998953h>48000h

∴预期寿命足够

二.主动轴上的轴承

(1)由初选的轴承的型号为6206

查[1]表14-19可知d=30mm,外径D=62mm,宽度B=16mm,

基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,

查[2]表10.1可知极限转速13000r/min

根据根据条件,轴承预计寿命

L'h=10×300×16=48000h

(1)已知nI=473.33(r/min)

两轴承径向反力:FR1=FR2=1129N

根据课本P265(11-12)得轴承内部轴向力

FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N

(2) ∵FS1+Fa=FS2 Fa=0

故任意取一端为压紧端,现取1端为压紧端

FA1=FS1=711.8N FA2=FS2=711.8N

(3)求系数x、y

FA1/FR1=711.8N/711.8N =0.63

FA2/FR2=711.8N/711.8N =0.63

根据课本P265表(14-14)得e=0.68

FA1/FR1<ex1=1FA2/FR2<ex2=1

y1=0y2=0

(4)计算当量载荷P1、P2

根据课本P264表(14-12)取f P=1.5

根据课本P264(14-7)式得

P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N

P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N

(5)轴承寿命计算

∵P1=P2 故取P=1693.5N

∵深沟球轴承ε=3

根据手册得6206型的Cr=19500N

由课本P264(14-5)式得

LH=106(ftCr/P)ε/60n

=106(1×19500/1693.5)3/60X473.33=53713h>48000h

∴预期寿命足够

七、键联接的选择及校核计算

1.根据轴径的尺寸,由[1]中表12-6

高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79

大齿轮与轴连接的键为:键 14×45 GB1096-79

轴与联轴器的键为:键10×40 GB1096-79

2.键的强度校核

大齿轮与轴上的键 :键14×45 GB1096-79

b×h=14×9,L=45,则Ls=L-b=31mm

圆周力:Fr=2TII/d=2×198580/50=7943.2N

挤压强度: =56.93<125~150MPa=[σp]

因此挤压强度足够

剪切强度: =36.60<120MPa=[ ]

因此剪切强度足够

键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~

1、减速器附件的选择

通气器

由于在室内使用,选通气器(一次过滤),采用M18×1.5

油面指示器

选用游标尺M12

起吊装置

采用箱盖吊耳、箱座吊耳.

放油螺塞

选用外六角油塞及垫片M18×1.5

根据《机械设计基础课程设计》表5.3选择适当型号:

起盖螺钉型号:GB/T5780 M18×30,材料Q235

高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235

低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235

螺栓:GB5782~86 M14×100,材料Q235

箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625取z=8

(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45

取z1=8

(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12

(4)箱座凸缘厚度b=1.5z=1.5×8=12

(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=

0.036×122.5+12=16.41(取18)

(7)地脚螺钉数目n=4 (因为a<250)

(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)

(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)

(10)连接螺栓d2的间距L=150-200

(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)

(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)

(13)定位销直径d=(0.7-0.8)d2=0.8×10=8

(14)df.d1.d2至外箱壁距离C1

(15)Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。

(17)外箱壁至轴承座端面的距离C1+C2+(5~10)

(18)齿轮顶圆与内箱壁间的距离:>9.6 mm

(19)齿轮端面与内箱壁间的距离:=12 mm

(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm

(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径

(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.

九、润滑与密封

1.齿轮的润滑

采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。

2.滚动轴承的润滑

由于轴承周向速度为,所以宜开设油沟、飞溅润滑。

3.润滑油的选择

齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。

4.密封方法的选取

选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

十、设计小结

课程设计体会

课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!

课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。

有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为(  )。

十一、参考资料目录

[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;

[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

2018-08-24 带传动和链传动

13.1 带传动的类型和应用13.1.1 带传动的工作原理和特点带传动由主动轮、从动轮和张紧在两轮上的传动带组成。利用带与带轮之间的摩擦或者啮合实现运动和动力的传递。其特点是具有良好的弹性、传动平滑、噪声小并有吸振和缓冲作用;过载时带与带轮间会出现打滑,可保护其他零件;结构简单,制造、安装及维护都较方便;适用于中心距较大的传动;由于存在相对滑动,不能保证准确的传动比;传动的外廓尺寸大,效率低;有较大的压轴力,寿命短。13.1.2 传动带的类型和应用带传动分为摩擦性和啮合型两大类。摩擦性传动带按截面形状分为平带,V带,圆带,多楔带。而同步齿形带属于啮合型传动带。 平带的工作表面是内周表面,V带是两侧面,在压紧力Q相同的情况下,平带与V带传动能力不同。对于平带,带与轮缘表面间的摩擦力Ff = fN = fQ;而对于V带,其摩擦力为 Ff = 2fN = fQ/sin (φ/2) = f'Q 。其中,φ为V带轮槽的槽角;f为带与带轮间的摩擦系数;f' = f/sin(φ/2)是当量摩擦系数。显然,f' >f,故在相同条件下,V带能传递较大的功率,在传递相同功率时,V带传动的结构较紧凑。圆带的牵引力小,常用于仪器和家用机械中。多楔带是平带和V带的组合结构,其楔形部分嵌入带轮上的楔形槽内,靠楔面之间产生的摩擦力工作。兼有平带和V带的优点,柔性好,摩擦力大,常用于结构要求紧凑、传递功率大的场合。 同步带传动是通过带齿与轮齿的啮合传递运动和动力,带与轮齿间无相对滑动,能保证准确的传动比;传动效率高;带薄而轻,强力层强度高,结构紧凑,可在恶劣条件下工作。缺点是对制造安装精度要求高,带和带轮的制造工艺复杂,中心距的要求较为严格。 目前应用最广泛的是V带传动。带速v为5~25m/s,传动比i ≤ 7(不超过10),传动效率η≈0.94~0.97。13.1.3 V带的规格V带由外包层、顶胶层、抗拉层和底胶层构成,其界面呈梯形结构,外包层由涂胶布制成,顶胶层和底胶层由橡胶制成。抗拉层是V带的骨架层,分为帘布结构和线绳结构。帘布结构抗拉强度高,制造方便;线绳结构柔韧性好、抗弯强度高、寿命长,可用在转速高、直径小的传动中。V带已标准化。普通V带应用最广泛,分为Y,Z,A,B,C,D,E七种型号。 V带受弯时,长度保持不变的周线称为节线,由节线组成的面称为节面。带的节面宽度称为节宽bp,在V带轮上,与节宽bp相对应的带轮直径称为基准直径d,V带的节线长度称为基准长度Ld。 13.2 带传动的基本理论13.2.1 尺寸计算小带轮的包角 α₁=180°-[(d₂-d₁)/a]·57.3° 。其中,d₁,d₂是小带轮、大带轮的基准直径,a是中心距。 带的基准长度 Ld=2a+(d₂+d₁)·Π/2+(d₂-d₁)²/4a 。 已知带长时,中心距 a≈(2Ld-Π(d₂+d₁)+{[2Ld-Π(d₂+d₁)]²-8(d₂-d₁)²}½)/8 。 13.2.2 受力分析 F₁ = Feⁿ/(eⁿ-1) F₂ = F/(eⁿ-1)F = F₁-F₂ = F₁(1-1/eⁿ)其中,n=fα;e是自然对数的底(e=2.718...);f是带与轮面间的摩擦系数(V带用当量摩擦系数f');α是带轮的包角;F₁是带在即将打滑时紧边拉力;F₂是带在即将打滑时的松边拉力;F是作用在微带上的有效拉力。 由此可知,增大包角、摩擦系数和初拉力,都可提高带传动所能传递的有效圆周力。13.2.3 应力分析传动时,带中应力由三部分组成。 拉力产生的拉应力。紧边拉应力,σ₁ = F₁/A MPa;送边拉应力, σ₂ = F₂/A MPa 。A是带的横截面积,单位为mm²。 离心力产生的拉应力。带做圆周运动时,产生的离心力使带受到拉力的大小为Fc = qv²,则 σc = qv²/A 。其中,q是每米带长的质量,v是带速。 弯曲应力。带绕过带轮时,因弯曲而产生弯曲应力,弯曲应力应为σb≈Eh/d。其中,E是带材料的弹性模量;h是带的高度;d是带轮的基准直径。 在运转过程中,带受交变应力的作用。最大应力发生在紧边进入小带轮处,其值为 σmax = σ₁+σb₁+σc 。13.2.4 运动分析弹性滑动。弹性滑动会引起从动轮的圆周速率下降,传动比不准确,降低传动效率和增加带的磨损。将从动轮圆周速度的相对降低率称为滑动率: ε=(v₁-v₂)/v₁=(Πd₁n₁-Πd₂n₂)/Πd₁n₁ ,得传动比i=n₁/n₂=d₂/(1-ε)。一般滑动率ε为1%~2%,在一般工业传动中可略去不计。 打滑现象。当带传动的载荷增大时,有效圆周力F也相应增大,当F超过极限摩擦力时,带与带轮间发生全面滑动,这种现象称为打滑。因带在小带轮上的包角小,故打滑多发生在小带轮上。打滑会造成带的严重磨损并使从动轮转速急剧下降,致使传动失效,因此应避免打滑。 13.3 普通V带传动的设计13.3.1带传动的失效形式和设计准则带传动的主要失效形式是打滑和带的疲劳破坏。因此,设计准则是在保证不打滑的前提下,具有一定的疲劳强度和寿命。 疲劳强度条件。 σmax = σ₁ + σc + σb₁ ≤ [σ] 。 不打滑条件。 F ≤ F₁(1-1/eⁿ) = σ₁A(1-1/eⁿ) 。 由以上两式,可得同时满足两个条件时单根普通V带能传递的额定功率P,即 P = Fv/1000 = ([σ]-σb₁-σc)(1-1/eⁿ)(Av/1000) kw 。其中,n = f'α。 若实际工作条件与上述特定工作条件不同时,应对P值修正。经修正的单根普通V带的许用功率为 [P] = (P+∆P)KαKl kw 。其中,∆P是单根普通V带额定功率的增表,Kα是包角系数,Kl是带长系数。13.3.2 设计计算步骤和参数选择设计V带传动的依据是传动用途、工作情况、带轮转速(或传动比)、传递的功率、外廓尺寸和空间位置条件等。需要确定的是V带的型号、长度和根数、中心距、带轮结构尺寸及压轴力等。 确定计算功率Pc。 Pc = KaP 。其中,P是传递的额定功率;Ka是工况系数。 选择带型。根据计算功率和小带轮转速n₁,选带的型号。 选取带轮基准直径d₁和d₂,验算带速v。小带轮基准直径小,则带传动外廓尺寸小,但如果过小,弯曲应力会过大,所以要限制小带轮基准直径,大于最小值。略去弹性滑动的影响,大带轮基准直径 d₂ = n₁d₁(1-ε)/n₂ ,取ε=0.015。带速高,则离心力大,从而降低传动能力,带速底,要求有效圆周力大,使带的根数过多。一般v应在5~25m/s范围内,否则应重新选取d₁。有 v=Πd₁n₁/60x1000 。 确定中心距a和V带的基准长度L0。先按 0.7(d₁+d₂)≤a0≤2(d₁+d₂) ,初定中心距a0,然后计算基准长度L0, L0 = 2a0 + (d₁+d₂)Π/2 + (d₂-d₁)²/4a0 。选取接近的标准长度L0,最后按下式近似确定中心距。 a≈a0+(Ld-L0)/2 。 验算小带轮包角α₁。为了保证传动能力,一般应使α₁≥ 120°。 α₁ = 180°-[(d₂-d₁)/a]x57.3° 。 确定V带的根数z。V带根数按下式计算, z=Pc/[P0]=KaP/(P0+∆P0)KαKl 。z值应取整数,为使各带受力均匀,通常V带的根数z<10。 确定初拉力F0。初拉力是保证传动正常工作的重要条件。初拉力不足,会出现打滑,初拉力过大,又使带的寿命降低,轴和轴承所受的压力增大。单根普通V带合适的初拉力可按下式计算: F0 = (500Pc/vz)(2.5/Kα-1) + qv² ,式中各符号意义同前。 计算压轴力Fq。为计算轴和轴承,必须确定作用在轴上的压力Fq,若忽略了两边的拉力差,可近似的按下式计算,即 Fq = 2zF0·sinα₂/2 。13.3.3 带轮设计带轮通常由三部分组成,即轮缘(安装传动带)、轮毂(与轴连接部分)、轮辐(中间部分)。带轮的材料主要用铸铁HT150或HT200。 v >25m/s时,宜采用铸钢;小功率时,可采用铸铝或塑料。带轮的结构形式有实心式,用于尺寸较小的齿轮,腹板式,用于中等尺寸的齿轮;轮辐式,用于尺寸较大的齿轮。 普通V带楔角为40°,但轮槽角小于40°,其原因是绕过带轮时产生横向变形,使楔角变小,且带轮直径越小,楔角越小。为使带的侧面与轮槽侧面接触良好,轮槽角总是小于V带楔角。13.3.4 V带传动的张紧装置因传动带的材料不是完全的弹性体,因此常在工作一段时间后会伸长而松弛,使初拉力下降,为保证正常工作,应设置张紧装置。常见的张紧装置有以下几种。 定期张紧装置。它是利用定期改变中心距的方法来调节带的初拉力,使其重新张紧。在水平或倾斜不大的传动中,可采用滑道式机构。电动机装在滑轨上,通过旋转调节螺钉改变电动机位置。在垂直或接近垂直的传动中,可采用摆架式结构,电动机固定在摇摆架上,旋动螺钉使机座绕固定轴旋转。 张紧轮张紧装置。当中心距不能调节时,可采用张紧轮把带张紧。张紧轮一般应放在松边内侧,尽量靠近大带轮,以减少对包角的影响。 13.4 链传动概述13.4.1 链传动的特点、类型及应用链传动由装在平行轴上的链轮1、链轮2和链条3组成,链条为中间挠性件,通过链节与链轮齿的啮合传递运动和动力。 与带传动相比,链传动的优点是没有弹性滑动和打滑,能保持准确的传动比;传动比效率为0.95~0.98,高于带传动,压轴力较小,传递功率大,可在、低速、重载、恶劣环境和较高温度下工作。与齿轮传动相比,链传动的优点是制造和安装精度较低,中心距较大时其传动结构简单,过载能力强。缺点是瞬时链速和瞬时传动比不是常数,工作中有一定动载荷和冲击,噪声较大,不能用于高速。 按用途不同,链可分为传动链、输送链和起重链。传动链主要用于传递运动和动力,应用很广,工作速度v≤15m/s,传递功率P≤100kw,最大速比i≤8。起重链和输送链用于起重机械和运输机械中。13.4.2 传动链和链轮传动链。传动链按结构不同分为滚子链和齿形链。 滚子链由滚子、套筒、销轴、内链板和外链板组成,其中内链板与套筒、外链板与销轴分别用过盈配合固联在一起,销轴和套筒之间为间隙配合,构成铰链,套筒与滚子之间也为间隙配合。当传递较大动力时,可采用多排链,承载能力大,但较难保证链的制造和装配精度,容易受载不均。滚子链已标准化,分为A,B两种系列,其中A系列常用。相邻两滚子中心的距离p称为节距,它是链的主要参数。当链节数为偶数时,接头处用开口销或弹簧夹锁紧,当链节数为奇数时,可用过渡链节,过渡链节的链板受拉时将受到附加弯曲应力,其强度较低,故最好取为偶数。 齿形链由两组外形相同的链板交错排列,用铰链连接而成,链板两侧工作面为直边,夹角为60°、铰链可做成滑动回转副或滚动回转副。由于齿形链的齿形特点,使传动较平稳,冲击小,噪声低(又称无声链),主要用于高速链传动(链速可达40m/s)或对运动精度要求较高的传动。但齿形结构较复杂,价格较贵,目前应用较少。 链轮。小直径链轮可做成整体式;中等尺寸的链轮可做成孔板式;尺寸较大的链轮可采用装配式,齿圈与轮毂可用焊接或螺栓连接。链轮轮毂的部分尺寸可参考带轮。链轮轮齿的齿形应保证链节能自由的进入和退出啮合,啮合时应保证接触良好,且齿形要便于加工。链轮上被链条节距等分的圆称为分度圆,其直径用d表示。已知节距p和齿数z,链轮主要尺寸的计算公式为 分度圆直径 d = p/sin (180°/z) ,齿顶圆直径 dzmax = d+1.25p-d₁,dzmax = d+(1-1.6/z)p-d₁ ,齿根圆直径 df = d-d₁ (d₁为滚子直径)。da的值应在damax与damin之间,如选用“三圆弧一直线”齿形,则 da = p[0.54+cot(180°/z)] 。 13.5 链传动的运动特性和受力分析13.5.1 链传动的运动特性链由很多刚性链节组成,链条绕上链轮后呈多边形状。传动时,链轮每回转一周,将带动链条移动正多边形周长zp的距离,故链的平均速度及平均传动比为 v=n₁z₁p/60x1000 = n₂z₂p/60x1000,i = n₁/n₂ = z₂/z₁ 。式中,p是链节距;z₁,z₂是主、从动轮的齿数;n₁,n₂是主、从动轮的转速。实际上,瞬时链速和瞬时传动比都不是定值。主动轮以ω₁等角速度转动时,分度圆周速度为 v₁ = R₁ω₁ ,则链条的前进速度为 vx = v₁cos β = R₁ωcos β 。β是圆周速度与水平线的夹角,其变化范围在±φ₁/2之间,φ₁=360°/z₁。当β=±φ₁/2时,链速最小,v=R₁ω₁cos φ₁/2,当β = 0时,链速最大,v=R₁ω₁。同样,设从动链轮的角速度为ω₂,圆周速度为v₂, v₂=v₁cos β/cos γ=R₂ω₂ ,则瞬时传动比为 i' = ω₁/ω₂ = R₂cos γ/R₁ cos β 。由于β、γ随链轮转动而变化,虽然ω₁是定值,ω₂却随β和γ的变化而变化,瞬时传动比随之变化,同时链在垂直方向的分速度Vy也在做周期性变化。13.5.2 链传动的受力分析安装链传动时,只需不大的紧张力,主要是使链松边的垂度不致过大,否则会产生显著振动、跳齿和脱链。若不考虑传动中的动载荷,链的紧边拉力为F₁=F+Fv+Fy,松边拉力为F₂ = Fc+Fy。其中,Fc是离心拉力,Fy是悬垂拉力,F是有效拉力。围绕在链轮上的链节运动中产生的离心拉力为 Fc = qv² 。其中,q是链的单位长度质量;v是链速。悬垂拉力可利用求悬索拉力的方法近似求得。 Fy = Ky·qga ,其中,a是链传动的中心距;g是重力加速度;Ky是下垂量y=0.02a时的垂度洗漱,其值与中心连线和水平线的夹角β有关。垂直布置时,Ky=1,水平时,Ky=6,倾斜布置时,Ky = 1.2(β=75°),2.8(β=60°),5(β=30°)。链作用在链轮轴上的压力Fq可近似取为Fq = (1.2~1.3)F。 13.6 链传动的设计13.6.1 链传动的主要失效形式铰链磨损。链条在工作中,销轴与套筒间由相对滑动,使铰链产生磨损,从而使链节变长,链与链轮的啮合点外移,这将引起跳齿和脱链,从而使传动失效。是开式链传动的主要失效形式。 链的疲劳破坏。链在运动过程中所受的载荷不断变化,因而链在变应力状态下工作,经过一定的循环次数后,链板会产生疲劳断裂,或者套筒、滚子表面产生冲击疲劳破坏。在润滑条件良好和设计安装正确的情况下,疲劳强度是决定链传动工作能力的主要因素。 胶合。当转速很高或润滑不良时,润滑油膜难以形成,使销轴和套筒的工作表面在很高的温度和压力下直接接触,从而导致胶合。胶合限制了链传动的极限转速。 过载拉断。在低速、重载的传动中或者尖峰载荷过大时,链会被拉断,其承载能力受到链元件静拉力强度的限制。13.6.2 功率曲线图实验条件:小链轮齿数z₁=19,链长L=100p,单排链,载荷平稳,工作寿命为15000h,链条因磨损而引起的相对伸长量不超过3%。链传动计算功率 Pc = KaP ≤ KzKlKpP0 。式中,Ka是工况系数;Kz,Kl,Kp是小链轮齿数z₁、链长L和链的排数不符合实验条件时的修正系数;P是传递的功率。 若润滑不良,P0值应降低。当链速v≤1.5m/s时,降到50%;当1.5m/s≤v≤7m/s时,降到25%;当v>7m/s时,链传动必须采用充分良好的润滑。 当v<0.6m/s时,链传动可能因强度不足而拉断,需进行静强度校核 S=Q/KaF₁≥4~8 ,式中,Q是链的极限拉伸载荷;F₁是链的紧边拉力;Ka是工况系数。13.6.3 主要参数的选择链轮齿数。小链轮齿数不宜过少或过多,过少会使运动不匀性加剧,过多则会因磨损引起的节距增长而发生跳齿和脱链,缩短链的使用寿命。大链轮齿数 z₂=iz₁ 。 若链条的铰链发生磨损,将使链条节距变长、链轮节圆d'向齿顶移动。节距增长量∆p与节圆外移量∆d'的关系,可由式导出 ∆d'=∆p/sin(180°/z) 。由此可知,∆p一定时,齿数越多节圆外移量越大,越容易发生跳齿和脱链现象。所以大链轮齿数不宜过大,一般应使z₂≤120。一般链条节数为偶数,而链轮齿数最好为奇数,这样可使磨损较均匀。 链节距。链的节距越大,其承载能力越高。但是当链接以一定的相对速度与链轮齿啮合的瞬间,将产生冲击和动载荷。节距越大,链轮转速越高,冲击越大。因此,设计时尽可能选用小节距链,高速重载时可选用小节距多排链。 中心距和链节数。链传动中心距过小,则小链轮上的包角也小,同时啮合的齿轮数减少,中心距过大,则易使链条抖动。一般取中心距 a=(30~50)p ,最大中心距amax≤80p。链条长度用链节数Lp表示,可由带传动中带长的计算公式导出 Lp=2q/p+(z₁+z₂)/2+p/a·[(z₂-z₁)/2Π]² 。计算出的链节数须圆整为整数,最好取为偶数。利用上式,可解出中心距a, a=p/4·([Lp-(z₁+z₂)/2]+{[Lp-(z₁+z₂)/2]²-8[(z₂-z₁)/2Π]²}½) 。为使松边有合适的垂度,实际中心距应比计算出的中心距小∆a,∆a=(0.002~0.004)a,中心距可调时取大值。13.6.4 链传动的布置和润滑链传动的布置应遵守以下原则:两链轮的回转平面应在同一铅垂平面内,尽量采用水平或接近水平的布置,尽量使紧边在上。 润滑对链传动的工作能力和使用寿命有很大影响。良好的润滑剂有利于减少磨损、降低摩擦损失、缓和冲击。设计时应注意润滑剂和 润滑方式的选择。

温馨提示:
本文【有一V带传动,电机转速为750r/min。带传动线速度为20m/s。现需将从动轮(大带锄轮)转速提高1倍,最合理的改进方案为(  )。】由作者 设备监理师考试 转载提供。 该文观点仅代表作者本人, 自学教育网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
(c)2008-2025 自学教育网 All Rights Reserved 汕头市灵创科技有限公司
粤ICP备2024240640号-6