当前位置:首页 建筑知识 有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:

有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:

发布时间:2023-03-03 06:37:48

有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:

A 、15.49Nm

有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:

B 、26.82Nm

C 、38.70 Nm

D 、46.44 Nm

参考答案

【正确答案:A】

三角形连接的电机用Y-△启动时,启动电流和启动转矩是直接启动的1/3

单向启动反接制动控制线路电阻作用

单向反接制动控制线路如何接原理是什么?电力制动通常有两种方式常用的电力制动有电源反接制动和能耗制动两种。

一、电源反接制动电源反接制动是依靠改变电动机定子绕组的电源相序,而迫使电动机迅速停转的一种方法。

1.单向反接制动控制线路单向运转反接制动控制线路由于反接制动时,转子与定子旋转磁场的相对速度接近两倍的同步转速,故反接制动时,转子的感应电流很大,定子绕组的电流也随之很大, 相当于全压直接起动时电流的两倍。为此,一般在4.5KW以上的电动机采用反接制动时,应在主电路中串接一定的电阻器,以限制反接制动电流,这个电阻称为反接制动电阻,用RB表示,反接制动电阻器,有三相对称和两相不对称两种联结方法,如某一相不串电阻器,则为二相不对称接法。

2.串接的制动电阻RRB的阻值可用下式计算RRB= KUΦ/Ist(Ω)式中RRB为反接制动电阻器的阻值,单位为欧姆(Ω);UΦ为电动机绕组的相电压,单位为 V Ist为电动机全压起动电流,单位为 A K为系数,如果要求反接制动的最大电流等于全压起动电流,K取0.13;如果要求反接制动最大电流为全压起动电流的一半,K取1.5 。若反接制动时,仅在两相的定子绕组中串接制动电阻,则选用的制动电阻的数值应为上式计算值的1.5倍。不频繁起动时,反接制电阻的功率为PR= 1/4 In 2RRB(In为电动机额定电流,其单位为A)频繁起动时,反接制动电阻的功率为PR=(1/3—1/2)In 2RRB例如一台4极鼠笼型电动机,额定功率为20KW,额定电流为38.4A,额定电压为380V,定子绕组为星接,问采用反接制动时,应串联RRB的阻值和功率为多少?从机电产品样本上查得IST为228A(若无产品样本,则可取 IST=(4—7)In,一般取中间值)。RRB =1.5×220/228=1.4ΩPR=1/3 In 2 RRP =1/3×38.42×1.4=164W

(一)可逆起动反接制动控制线路1.电动机可逆起动反接制动的控制线路之一电动机可逆起动反接制动的控制线路之一,如图21805所示。该控制线路由于主回路中没有限流电阻RB,所以只能用于容量较小的电动机。图中KS—1和KS—2分别为速度继电器正反两个方向的两副常开触头,当按下SB2时,电动机正转,速度继电器的常开触头KS—2闭合,为反接制动作准备,当按下SB3时,电动机反转,速度继电器KS—1闭合,为反接制动作准备。中间继电器KA的作用是:为了防止当操作人员因工作需要而用手转动工件和主轴时,电动机带动速度继电器KS也旋转;当转速达到一定值时,速度继电器的常开触头闭合,电动机获得反向电源而反向冲动,造成工伤事故。图21805控制线路的工作原理,简述如下:闭合电源开关QS后按SB2,接触器KM1获电闭合并通过其自锁触头自锁,电动机M正转起动,当电动机转速高于120转/每分钟 时,KS—2闭合,为反接制动作准备。当需要正转停止时,按SB1,接触器KM1断电释放而中间继电器KA获电吸合并自锁;KA的常开触头断开,切断KM2自锁触头的供电回路,使其不能自锁;KA的常开触头接通KM2的线圈回路,使KM2获电吸合,此时反接制动开始,当电动机的转速降至约100转/每分钟时,速度继电器KS—2断开,使 KM2断电释放,在中间继电器自锁回路中的常开触头KM2断开,使中间继电器KA也失电释放。反转的起动及反接制动的工作原理与上述相似,不再赘述。可逆起动反接制动的控制线路之一的参考接线步骤如下:

(1)首先接好电源FU2及热继电器FR常闭触头,引出控制电源“1”与“2”。

(2)将电源“1”接至三个线圈的一端。接触器KM1与KM2的线圈空闲端分别接至对方的常闭触头;从KM1、KM2的两个空常闭触头各引出一长一短两根线,其中两根短线接至对方的常开触头,两根长线为两个接触器各自的线圈线,其中从KM2常闭引出的长线为“KM1的线圈线”,接至SB2左侧常开接点;从KM2常闭引出的长线为“KM2的线圈线”,接至SB3左侧常开接点。

(3) 将KM1、KM2刚接过线的常开触头的空接点,与KA的常闭触头用导线连接,并引出一根长线作为“KM1与KM2的共自锁线”接到SB2(或SB3),右侧常开接点;从KA常闭接点的空闲端点引出一根长线,接至SB1右侧常闭接点;从KA 线圈的空接点引出两短一长共三根线,短线分别接KM1、KM2未接过线的常开接点,长线作为“KA的线圈线”接至SB1左侧常开接点,将刚接过线的KM1、KM2的两个空常开接点与KA 的常开接点连接,将刚接过线的KA常开空触头与另一个KA常开触头连接,并从此点引出一长一短两根导线,其中短线与电源“2”连接,长线作为“电源线”接至SB1右侧常开(或左侧常闭)接点上。

(4)从刚接过线的KA常开空接点引出一根长线接至速度继电器KS 的两个常开触头,将KS-1,KS-2的空接点与KM1、KM2的线圈线连接。此处注意KS-1与KM1线圈线连接,KS-2与KM2线圈线连接。如果KS与按钮开关较近,则将KS 的引出线接至按钮开关SB2、SB3的左侧常开接点;如果KS与接触器KM1、KM2较近,则将KS的引出线接至KM1、KM2的常开自锁触头上(与常闭触头交叉相连的一端)。

(5)将SB1左侧常闭与右侧常开两接点相连接;将SB2与SB3右侧常开的两接点相连接。

(6)检查所有的接线,确认无错漏后,送电试机。

2.可逆起动反接制动控制线路之二可逆起动反接制动控制线路之二,相反方向的起动和制动的原理与上述相似,不在赘述。控制电路中,由于主回路串接了电阻RB,限制了反接制动电流,又能限制起动电流,所以该线路可以用在电动机功率较大的场所。该线路所用电器较多,造价较高,但其运行确实安全可靠,操作也非常方便,电动机在运转时,如需换向运行,只要按动相应的起动按钮,电路便自动完成电动机的断电→串电阻反接制动→电动机转速近于零→串电阻限流换向起动→换向正常运行的全部过程。不必先按停止按钮,这样即简化了操作手续,又提高了电路的反应速度,且制动力很强,所以是一个比较完善的电路。该线路也有一些缺点:如所用电器较多,相应线路较复杂,且造价较高,在制动过程中冲击较大,故此,该线路适用于制动要求迅速,系统惯性较大而且制动不太频繁的场所。

5

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

单向反接制动控制线路如何接原理是什么?

有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:

单向反接制动控制线路如何接原理是什么?

电力制动通常有两种方式常用的电力制动有电源反接制动和能耗制动两种。

一、电源反接制动

电源反接制动是依靠改变电动机定子绕组的电源相序,而迫使电动机迅速停转的一种方法。

1.单向反接制动控制线路

单向运转反接制动控制线路由于反接制动时,转子与定子旋转磁场的相对速度接近两倍的同步转速,故反接制动时,转子的感应电流很大,定子绕组的电流也随之很大, 相当于全压直接起动时电流的两倍。为此,一般在4.5KW以上的电动机采用反接制动时,应在主电路中串接一定的电阻器,以限制反接制动电流,这个电阻称为反接制动电阻,用RB表示,反接制动电阻器,有三相对称和两相不对称两种联结方法,如某一相不串电阻器,则为二相不对称接法。

三相异步电动机额定效率怎么计算

根据三相电机功率计算公式P=√3×U×I×COSΦ×η反算可知,其中的η即为效率,其他参数代入即可。

机械的输出功(有用功量)与输入功(动力功量)的百分比,即计算公式为η=W有/W总×100%。

式中其他参数分别为:P为电机轴端输出功率(22KW),U为电机线电压(380V),I为电流(42.2A),COSΦ为功率因数(0.89),η为效率。

在实际机械中总有以下关系:输入功=输出功+消耗功,或动力功=有用阻力功+无用阻力功,因此机械效率总小于1。

扩展资料

异步电动机的效率一般为75%-92%,影响电动机效率的因素有很多,根本原因是其内部损耗:效率=(输入功率-损耗功率)/输入功率。

额定功率的影响

1、不在额定频率下运行对其性能的影响

根据同步转速no与额定频率fh,机极对数P的关系,可见,同步转速no与频率下降值成正比。换句话说,电动机的转速与电源频率成正比。

2、对转差率的影响

因为电磁转矩为常数,当频率变化时,磁通与频率成反比变化。所以转子电流与频率成正比变化。

3、对转矩的影响

1)起动转拒:异步电动机的起动转矩似地与电源频率的三次方成反比。

2)最大转矩;异步电动机的最大转矩与电源频率的平方成反比。

4、对效率和温升的影响

在恒转矩负载情况下,当频率下降时,输出功率亦减少,所以效率仍然下降,同时由于转速的降低,冷却条件变坏,所以温升上升。

有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:

如果异步电动机要在降频情况下运行,最好选择在额定工况运行时气隙磁通设计成欠饱和状态的电动机,这在降频运行时,电动机的温升就比较小。

参考资料来源:百度百科—异步电动机的效率

参考资料来源:百度百科—机械效率

参考资料来源:百度百科—额定频率

温馨提示:
本文【有一台6 kW的三相异步电动机,其额定运行转速为1480rpm,额定电压为380V,全压启动转矩是额定运行转矩的1.2倍,现采用启动以降低其启动电流,此时的启动转矩为:】由作者 电气工程师考试 转载提供。 该文观点仅代表作者本人, 自学教育网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
(c)2008-2025 自学教育网 All Rights Reserved 汕头市灵创科技有限公司
粤ICP备2024240640号-6