温度为50℃、直径为0.2m的水平圆柱与20℃的空气之间进行自然对流传热,若空气的运动黏度取16.96×10-6m2/s,则格拉晓夫数为()。
A 、
B 、
C 、
D 、
【正确答案:A】
格拉晓夫准则为:,式中,α为流体容积膨胀系数;g为重力加速度;L为壁面定型尺寸;Δt为流体与壁面温度差;υ为运动黏度。代入已知数据可得,。
一、实验目的
工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。了解与测定各种环境下的对流传热系数具有重要的实际意义。
通过本实验可达到下列目的:
测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。
了解非定常态导热的特点以及毕奥准数(Bi)的物理意义。
熟悉流化床和固定床的操作特点。
二、实验原理
自然界和工程上,热量传递的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。
当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。
通过对导热的研究,傅立叶提出:
(1)
式中:- y方向上的温度梯度
上式称为傅立叶定律,表明导热通量与温度梯度成正比。负号表明,导热方向与温度梯度的方向相反。
金属的导热系数比非金属大得多,大致在50~415范围。纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。本实验中,小球材料的选取对实验结果有重要影响。
热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。具有宏观尺度上的运动是热对流的实质。流动状态(层流和湍流)的不同,传热机理也就不同。
牛顿提出对流传热规律的基本定律 - 牛顿冷却定律:
(2)
并非物性常数,其取决于系统的物性因素,几何因素和流动因素,通常由实验来测定。本实验测定的是小球在不同环境和流动状态下的对流传热系数。
强制对流较自然对流传热效果好,湍流较层流的对流传热系数要大。
热辐射是当温度不同的物体,以电磁波形式,各辐射出具有一定波长的光子,当被相互吸收后所发生的换热过程。热辐射和热传导,热对流的换热规律有着显著的差别,传导与对流传热速率都正比于温度差,而与冷热物体本身的温度高低无关。热辐射则不然,即使温差相同,还与两物体绝对温度的高低有关。本实验尽量避免热辐射传热对实验结果带来误差。
物体的突然加热和冷却过程属非定常导热过程。此时导热物体内的温度,既是空间位置又是时间的函数,。物体在导热介质的加热或冷却过程中,导热速率同时取决于物体内部的导热热阻以及与环境间的外部对流热阻。为了简化,不少问题可以忽略两者之一进行处理。然而能否简化,需要确定一个判据。通常定义无因次准数毕奥数(Bi),即物体内部导热热阻与物体外部对流热阻之比进行判断。
(3)
式中: - 为特征尺寸,对于球体为R/3
若Bi数很小,,表明内部导热热阻<<外部对流热阻,此时,可忽略内部导热热阻,可简化为整个物体的温度均匀一致,使温度仅为时间的函数,即。这种将系统简化为具有均一性质进行处理的方法,称为集总参数法。实验表明,只要Bi<0.1,忽略内部热阻进行计算,其误差不大于5%,通常为工程计算所允许。
将一直径为ds温度为的小钢球,置于温度为恒定的周围环境中,若,小球的瞬时温度T,随着时间t的增加而减小。根据热平衡原理,球体热量随时间的变化应等于通过对流换热向周围环境的散热速率。
(4)
(5)
初始条件:
积分(5)式得:
(6)
(7)
定义时间常数,分析(6)式可知,当物体与环境间的热交换经历了四倍于时间常数的时间后,即:,可得:
表明过余温度的变化已达98.2%,以后的变化仅剩1.8%,对工程计算来说,往后可近似作定常数处理。
对小球代入式(6)整理得:
(8)
或(9)
通过实验可测得钢球在不同环境和流动状态下的冷却曲线,由温度记录仪记下T~t的关系,就可由式(8)和式(9)求出相应的和的值。
对于气体在范围,即高数下,绕球换热的经验式为:
(10)
若在静止流体中换热:。
三、预习与思考
明确实验目的。
影响热量传递的因素有哪些?
数的物理含义是什么?
本实验对小球体的选择有哪些要求,为什么?
本实验加热炉的温度为何要控制在400~500℃,太高太低有何影响?
自然对流条件下实验要注意哪些问题?
每次实验的时间需要多长,应如何判断实验结束?
实验需查找哪些数据,需测定哪些数据?
设计原始实验数据记录表。
实验数据如何处理?
四、实验装置与流程
固体小球对流传热系数的测定实验装置流程图
五、实验步骤及方法
测定小钢球的直径ds 为15mm。
打开管式加热炉的加热电源,调节加热温度至400~500℃。
将嵌有热电偶的小钢球悬挂在加热炉中,并打开温度纪录仪,从温度计录仪上观察钢球温度的变化。当温度升至400℃时,迅速取出钢球,放在不同的环境条件下进行实验,钢球的温度随时间变化的关系由温度记录仪记录。
装置运行的环境条件有:自然对流,强制对流,固定床和流化床。流动状态有:层流和湍流。
自然对流实验:将加热好的钢球迅速取出,置于大气当中,尽量减少钢球附近的大气扰动,记录下冷却曲线。
强制对流实验:打开实验装置上的1、2、3阀,关闭4、5、6阀,开启风机,调节阀6和2阀,调节空气流量达到实验所需值。迅速取出加热好的钢球,置于反应器中的空塔身中,记录下空气的流量和冷却曲线。
固定床实验:将加热好的钢球置于反应器中的砂粒层中,其它操作同(6),记录下空气的流量,反应器的压降和冷却曲线。
流化床实验:打开1、2、6阀,关闭4、3、5阀,开启风机,调节阀4和阀2,调节空气流量达到实验所需值。将加热好的钢球迅速置于反应器中的流化层中,记录下空气的流量,反应器的压降和冷却曲线。
六、实验数据处理
计算不同环境和流动状态下的对流传热系数。
计算实验用小球的准数,确定其值是否小于0.1。
将实验值与理论值进行比较。
七、结果与讨论
基本原理的应用是否正确?
对比不同环境条件下的对流传热系数。
分析实验结果同理论值偏差的原因。
对实验方法与实验结果讨论。
八、主要符号说明
上一篇:板式塔流体力学演示实验装置使用说明书
下一篇:空气调节系统模拟实验指导书
我们
没有影响,蒸汽一侧可以认为是各处温度相等的,所以无论是逆流还是并流,其传热推动力的计算结果是一样的。
实验目的:
1、通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数α的测定方法,加深对其概念和影响因素的理解。并用线性回归分析方法,确定关联式Nu=ARemPr0.4中常数A、m的值。
2、通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRem中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
扩展资料:
对流传热时的一个比例系数。表示对流传热过程的强度。是在单位时间(1小时)内,当温度差为1℃时,每单位壁面(1m^2)向其周围流体给出(或从周围流体接受)的热量(kj)。
当流体与固体表面之间的温度差为1K时, 1m*1m壁面面积在每秒所能传递的热量。h的大小反映对流换热的强弱。
如上所述,h与影响换热过程的诸因素有关,并且可以在很大的范围内变化,所以牛顿公式只能看作是传热系数的一个定义式。它既没有揭示影响对流换热的诸因素与h之间的内在联系,也没有给工程计算带来任何实质性的简化,只不过把问题的复杂性转移到传热系数的确定上去了。
因此,在工程传热计算中,主要的任务是计算h。计算传热系数的方法主要有实验求解法、数学分析解法和数值分析解法。
在不同的情况下,传热强度会发生成倍直至成千倍的变化,所以对流换热是一个受许多因素影响且其强度变化幅度又很大的复杂过程。
参考资料来源:百度百科——对流换热系数
牛顿指出,流体与固体壁面之间对流传热的热流与它们的温度差成正比,即:
q = h*(tw-t∞)
Q = h*A*(tw-t∞)=q*A
式中:q为单位面积的固体表面与流体之间在单位时间内交换的热量,称作热流密度,单位W/m^2;tw、t∞分别为固体表面和流体的温度,单位K;A为壁面面积,单位m^2;Q为单位时间内面积A上的传热热量,单位W;h称为表面对流传热系数,单位W/(m^2.K)。
扩展资料牛顿冷却公式中的比例系数,一般记做h,以前又常称对流换热系数,单位是W/(㎡*K),含义是对流换热速率,在数值上等于单位温度差下单位传热面积的对流传热速率。
牛顿冷却公式:流体被加热时 q=h(Tw-Tf)
流体被冷却时 q=h(Tf-Tw)
其中,Tw及Tf分别为壁面温度和流体温度,℃。如果把温差(亦称温压)记为ΔT,并约定永远为正值,则牛顿冷却公式可表示为:q=hΔTΦ=hAΔT
其中q为热流密度,单位是瓦/平米(W/㎡),Φ为热流,单位是瓦(W)。
参考资料来源:百度百科-对流换热系数