简单的数据转换方法可大致分为两类:线性转换,对原始数据中的每个值加常数或乘以常数,通常不会改变统计检验的结果;非线性转换,如对数转换,平方根转换等,转换后的统计检验结果与未转换的变量的统计检验结果会有不同。无论怎样转换数据,对每个变量的值均进行了同一种转换模式,各变量之间独立互不影响。
(1)改变数据的结构,使其能更好地反映生态关系。例如使本来不具备线性关系两种变量转换为线性关系,因为线性关系通常比非线性关系更容易解释。
(2)为了更好地适合某些特殊分析方法。例如T检验要求数据近似正态分布,而我们的数据并非如此(生态学的数据普遍是非正态分布,这点大家深有体会吧),若执行T检验则必须首先将数据转换为正态分布类型。如在某些情况下可使用log转换实现这一需求。
(3)缩小属性间的差异性,使数据值趋向一致,便于数据观测和统计等。