数据变换的常用方法

199次

问题描述:

数据变换的常用方法有

推荐答案

2023-10-24 01:29:38

简单的数据转换方法可大致分为两类:线性转换,对原始数据中的每个值加常数或乘以常数,通常不会改变统计检验的结果;非线性转换,如对数转换,平方根转换等,转换后的统计检验结果与未转换的变量的统计检验结果会有不同。无论怎样转换数据,对每个变量的值均进行了同一种转换模式,各变量之间独立互不影响。

(1)改变数据的结构,使其能更好地反映生态关系。例如使本来不具备线性关系两种变量转换为线性关系,因为线性关系通常比非线性关系更容易解释。

(2)为了更好地适合某些特殊分析方法。例如T检验要求数据近似正态分布,而我们的数据并非如此(生态学的数据普遍是非正态分布,这点大家深有体会吧),若执行T检验则必须首先将数据转换为正态分布类型。如在某些情况下可使用log转换实现这一需求。

(3)缩小属性间的差异性,使数据值趋向一致,便于数据观测和统计等。

其他答案

2023-10-24 01:29:38

数据变换方法: 初值化、 均值化、百分比/倍数变换、归一化、极差最大值化、区间值化

数据变换的目的:

对收集来的原始数据必须进行数据变换和处理,主要是为了消除量纲,使其具有可比性。

特征归一化,又叫特征缩放,Feature Normalization,Feature Scaling。各特征由于数值大小范围不一致,通过缩放特征的取值范围,可以消除量纲,使特征具有可比性。只有各特征之间的大小范围一致,才能使用距离度量等算法,加速梯度下降算法的收敛;在SVM算法中,一致化的特征能加速寻找支持向量的时间;不同的机器学习算法,能接受的输入数值范围不一样。sklearn中最常用的特征归一化方法是MinMaxScaler和StandardScaler。

知道问答相关问答

(c)2008-2025 自学教育网 All Rights Reserved 汕头市灵创科技有限公司
粤ICP备2024240640号-6