设惯性系K’(x’,y’,z’,t’)沿惯性系K(x,y,z,t)的x轴正向以速度U=(u,0,0)匀速运动,自惯性系K到惯性系K’的正交线性变换为A=(aij)(i,j=1,2,3,4),即 (x’,y’,z’,t’)=(x,y,z,t)A① 令R=(x,y,z),R’=(x’,y’,z’),A11=(aij)(i,j=1,2,3),A12=(ai4)(i=1,2,3),A21=(a4j)(j=1,2,3),A22=(a44),则由K到K’的线性变换可改写为 R’=RA11+tA21,t’=RA12+ta44② 于是 dR’/dt’=((dR/dt)A11+A21)/((dR/dt)A12+a44) 令dR/dt=V,dR’/dt’=V’,则V、V’分别表示运动粒子在K与K’系中的速度,上式可改写为 V’=(VA11+A21)/(VA12+a44)③ 满足上述速度变换的初始条件有(1)洛仑兹变换与伽利略变换的公共条件:“V’=0,V=U”与“V=0,V’=–U”;
(2)满足伽利略变换的极限条件:|V|→∞时,|V’|→∞。 将条件(2)代入,并令V/|V|=V0得 |V’|=|(V0A11+A21/|V|)/(V0A12+a44/|V|)|=|V0A11/V0A12|=∞(|V|→∞) 上式成立,必有A12’=0=(0,0,0)[注1],于是③式变为 V’=VA11/a44+A21/a44④ 再将条件(1)代入④式,得 UA11/a44+A21/a44=0,A21/a44=–U 由此得 A21=–UA11,A21=–Ua44 由于U=(u,0,0),代入上式便得a12=a13=a42=a43=0,a41=–a11u,a44=a11,再由A12’=(0,0,0)得a14=a24=a34=0,代入④式,并令V=(vx,vy,vz),V’=(vx’,vy’,vz’),便得 (vx’,vy’,vz’)=(a11(vx–u)+a21vy+a31vz,a22vy+a32vz,a23vy+a33vz)/a11⑤ 由于对于vx’=0的点,vx=u,代入便得a21=a31=0;对于vy=0的点,vy’=0,代入便得a32=0;对于vz=0的点,vz’=0,代入便得a23=0,于是有 a12=a13=a14=a21=a23=a24=a31=a32=a34=a42=a43=0,a41=–a11u,a44=a11 将上述条件代入①式得 (x’,y’,z’,t’)=(x,y,z,t)A=(a11(x–ut),a22y,a33z,a11t)⑥ 又当t=0时,K与K’两惯性系重合,故当t=0时,有x’=x,y’=y,z’=z[注2],代入⑥式便得a11=a22=a33=1,这样就得到了伽利略变换为 (x’,y’,z’,t’)=(x–ut,y,z,t)证毕。 [注1]A12’表示A12的转置。 [注2]显然这一条件是相对论所不容许的,但其合理性是不容置疑的。如果在式⑥中直接代入洛仑兹变换证明中的假定a22=a33=1,或根据洛仑兹变换证明中使用的惯性系平权原理:自K’系到K系的线性变换为A(-U),且A(U)A(-U)=E,亦能得到a11=a22=a33=1,从而得到伽利略变换。