隧道效应由微观粒子波动性所确定的量子效应。又称势垒贯穿。考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。
约瑟夫森效应属于隧穿效应,但有别于一般的隧道效应,它是库伯电子对通过由超导体间通过弱连接形成约瑟夫森结的超流效应。
隧道效应是理解许多自然现象的基础。
在两层金属导体之间夹一薄绝缘层,就构成一个电子的隧道结。实验发现电子可以通过隧道结,即电子可以穿过绝缘层,这便是隧道效应。使电子从金属中逸出需要逸出功,这说明金属中电子势能比空气或绝缘层中低.于是电子隧道结对电子的作用可用一个势垒来表示,为了简化运算,把势垒简化成一个一维方势垒。
所谓隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为几个nm(10m),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E<V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。
产生隧道效应的原因是电子的波动性。按照量子力学原理,在低速情况下,具有能量(动能)E的电子的波长
hλ=-√2mE(其中,h——普朗克常数24x;m——电子质量;E——电子的动能),在势垒V前:若E>V,它进入势垒V区时,将波长改变为
hλ’=-√2m(E-V)
若E<V时,虽不能形成有一定波长的波动,但电子仍能进入V区的一定深度。当该势垒区很窄时,即使是动能E小于势垒V,也会有一部分电子穿透V区而自身动能E不变。换言之,在E<V时,电子入射势垒就一定有反射电子波存在,但也有透射波存在。
量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantum tunneling)。可见,宏观上的确定性在微观上往往就具有不确定性。虽然在通常的情况下,隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在某些特定的条件下宏观的隧道效应也会出现。
根据光隧道效应原理,利用光纤探测头、压电陶瓷、光电倍增管、扫描控制跟踪系统和微机,可以构成光隧道显微镜。它可以探测样品的表面形貌。在经典物理中,光在光纤内部全反射,在量子物理中,激光可以从一根光纤内通过隧道效应进入相距很近的另一个光纤内部,分光器就是利用量子隧道效应而制成的。
超导隧道结的发现在理论和实验上均有重要的价值。受此启发Julliere对Fe/Ge/Co磁性隧道结输运性质的研究作了开拓性的研究,发现隧道阻抗随铁磁层的磁化状态而变化,低温下电导的相对变化可达14%。1975年后人们对类似结构中的磁电阻效应进行了研究,但在室温下均不能获得较大的磁电阻效应。在GMR效应全球研究浪潮推动下,1994年在“磁性金属/非磁绝缘体/磁性金属”(FM/I/FM)型隧道结Fe/Al2O3/Fe中获得了突破性进展。
4.2K低温下,磁电阻变化率高达30%,室温下达18%。在这种结构中如果两铁磁层的磁化方向平行,一个铁磁层中多数自旋子带的电子将进入另一个电极中的多数自旋子带的空态,同时少数自旋子带的电子也从一电极进入另一电极的少数自旋子带的空态;如果两电极的磁化方向反平行,则一个电极中的多数子带的自旋与另一个电极的少数自旋子带电子的自旋平行,这样,隧道电导过程中一个电极中多数自旋子带的电子必须在另一个电极中寻找少数自旋子带的空态,因而其隧道电导必须与两极的磁化方向平行时的电导有所差别,将隧道电导与铁磁电极的磁化方向相关的现象称为磁隧道阀效应(magnetic valve effect)。理论上假定电子穿越绝缘体势垒时保持其自旋方向不变,在实际制备过程中由于氧化层生成时难免导致相邻铁磁层氧化,致使反铁磁性的氧化薄层的出现影响磁电电阻效应。所以实验的结果比理论上的预计要小。
因为Fe和Co的ρ值分别为40%和34%,故Julliere模型可得Fe/I/Co的24%,但Fe/Ge/Co的实验值与理论值有一定差距。在磁隧道阀中,磁场克服的铁磁层的矫顽力就可使它们的磁化方向转至磁场方向而趋于一致,这时TMR(即隧道磁电阻)为极小值;若将磁场减小至负,矫顽力小的铁磁层的磁化方向首先反转,两铁磁层的磁化方向相反,隧道电阻为极大值。由于只需反转一个单纯的铁磁层,因而只需一个非常小的外场便可实现TMR极大值,所以其磁场灵敏度极高。Fe/Al2O3/Fe 和CoFe/Al2O3的磁场灵敏度分别为8%/Oe和5%/Oe。这些结果是多层膜的GMR及氧化物的CMR远所难及的。另外,在磁隧道结中可以通过改变氧化层的厚度来改变零场下的电阻值,而磁隧道结电阻值并不因此而改变的。这在金属多层膜中是很难实现的。这样根据不同的器件的驱动电压不同可以设计出不同的磁隧道结。今后如能解决氧化层的稳定制备和制备过程中铁磁层的氧化问题,其工业应用前景非常可观。此外如果技术手段可以保证的话,制备多层氧化隧道结也许可以获得更为丰富的物理效应和应用价值。隧道结的磁电阻效应取得了突破之后,人们受颗粒膜的启发又在Ni-SiO2, Co-SiO2, Fe-MgF2以及Fe-SiO2的铁磁绝缘物颗粒膜中发现了高的磁电阻效应。实验表明该体系中磁电阻效应与磁性颗粒的大小有关,数值不大,饱和场较高,应用的前景可能不大。隧道效应──微观粒子能透入按经典力学规律它不可能进入的势垒区,是反映微观粒子的波动性的一种基本效应。可以把半导体(或绝缘体)中的电子迁移现象理解为在外电场下,束缚在一个原子中的电子,通过隧道穿透势垒,到另一个原子中。不过,通常说的半导体中的隧道效应指的不是这种对原子势场的量子隧道效应。而是指电子对半导体中宏观势垒的穿透,这个宏观势垒是半导体的禁带造成的。C.齐纳在1934年最先提出,在外电场下,价带的电子可以穿过禁带进入导带。在禁带中电子波函数指数衰减(波矢是复数的),就和穿过势垒时相似;齐纳认为这是强场下半导体(或绝缘体)电击穿的一种原因。但实验表明,通常半导体电击穿过程中,这种原因(称齐纳击穿)只起很次要的作用。只有在某些特殊类型的PN结的反向击穿中,才有以齐纳击穿为主的情况。这种类型的PN结称齐纳二极管,或按其用途叫稳压二极管。通常是硅二极管。1957年江崎玲於奈发明了隧道二极管。它是高掺杂半导体形成的窄的PN结;当它加上前向偏压时,N区电子可以通过隧道效应,穿过禁带进入P区中价带的空状态。随所加的偏压增大,开始时隧道电流变大(可以进入的空状态增多);随后到达极大值然后逐渐下降(可以进入的空状态减少),最后下降到零(可以进入的空状态没有了)。隧道二极管伏安特性曲线是隧道二极管的伏安特性曲线,以及对应各部分的PN结能带图。隧道二极管正向伏安特性中有一段负阻区,而且它还是一种多数载流子效应,没有渡越时间的限制,所以隧道二极管可用作低噪声的放大器、振荡器或高速开关器件,频率可达毫米波段。它作为器件的缺点是功率容量太小。隧道过程中,常常有电子-声子相互作用或电子-杂质相互作用参加。从隧道二极管的伏安特性上可分析出参与隧道过程的某些声子的频率。在势垒区中的光吸收或发射中,隧道效应也起着作用,这称夫兰克-凯尔德什效应。杂质的束缚电子态和能带中电子态之间的隧道也观察到。
江崎玲於奈的发明开创了研究固体中隧道效应的新阶段。因此,他和发现超导体中隧道现象的I.加埃沃、B.D.约瑟夫森一起获得了1973年诺贝尔物理学奖。金属半导体接触势垒(肖特基势垒)中的隧道现象也很有趣。1932年,A.H.威耳孙、约飞和夫伦克耳企图用隧道电流来解释肖特基势垒的整流效应,但发现所预言的整流方向是错误的。不过,却发现有些高掺杂的肖特基势垒在小的前向偏压下,隧道电流是主要的电流机制。金属-绝缘体-半导体系统中隧道效应的研究也是有意义的。
经济学家Shleifer提出的“隧道效应”
Laffont他们研究的同时,Shleifer等从法律经济学的视角出发,提出了公司治理中的“隧道效应”理论。他们的分析认为:隧道效应即控股股东为了自己的利益从公司转移资产和利润的行为,这一理论比较好的解释了控股股东侵害中小股东的利益的现象。1997~1998年的亚洲金融危机提供了控股股东掠夺公司资源、侵害中小股东权益的许多案例。事实上,隧道效应不仅仅发生在新兴市场,有着完善的民法的发达国家同样有掠夺行为,而且这些掠夺行为可能还是合法的行为;而在新兴市场,隧道行为有时采取偷窃和欺诈的方式。这些理论的提出,使得合谋理论从组织间的研究,进一步拓展深入到公司治理领域;而转型经济中的公司治理,为合谋理论的理论和实证研究提供了一片沃土;此后的一系列相关实证研究更是进一步推动和验证了合谋理论。
隧道效应理论主要从控股股东掠夺中小股东权益的发生机制、掠夺的手段以及司法的介入的作用等方面做了理论和案例分析,当然也有许多实证和经验研究。但隧道效应理论在讨论控股股东掠夺的时候,一般比较少涉及到管理层,特别是控股股东和管理层的合谋侵害(掠夺)中小股东权益的情形。本来,现实中,掠夺得以进行,就必然需要管理层的合谋(或者说是协助)。此外,隧道效应理论也比较少的考虑信息的作用和交易成本的影响,而是比较多的考虑了法律的作用,这也是隧道效应理论的局限所在。但是,隧道效应理论对于公司治理、特别是新兴转型国家的公司治理还是很有开创性的理论意义与实际意义的。